| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matplusgcell.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | matplusgcell.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | matplusgcell.p | ⊢  ✚   =  ( +g ‘ 𝐴 ) | 
						
							| 4 |  | matplusgcell.q | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 5 | 1 2 3 4 | matplusg2 | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ✚  𝑌 )  =  ( 𝑋  ∘f   +  𝑌 ) ) | 
						
							| 6 | 5 | oveqd | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝐼 ( 𝑋  ✚  𝑌 ) 𝐽 )  =  ( 𝐼 ( 𝑋  ∘f   +  𝑌 ) 𝐽 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  →  ( 𝐼 ( 𝑋  ✚  𝑌 ) 𝐽 )  =  ( 𝐼 ( 𝑋  ∘f   +  𝑌 ) 𝐽 ) ) | 
						
							| 8 |  | df-ov | ⊢ ( 𝐼 ( 𝑋  ∘f   +  𝑌 ) 𝐽 )  =  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 〈 𝐼 ,  𝐽 〉 ) | 
						
							| 9 | 8 | a1i | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  →  ( 𝐼 ( 𝑋  ∘f   +  𝑌 ) 𝐽 )  =  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 〈 𝐼 ,  𝐽 〉 ) ) | 
						
							| 10 |  | opelxp | ⊢ ( 〈 𝐼 ,  𝐽 〉  ∈  ( 𝑁  ×  𝑁 )  ↔  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 12 | 1 11 2 | matbas2i | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 13 |  | elmapfn | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) )  →  𝑋  Fn  ( 𝑁  ×  𝑁 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  Fn  ( 𝑁  ×  𝑁 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  Fn  ( 𝑁  ×  𝑁 ) ) | 
						
							| 16 | 1 11 2 | matbas2i | ⊢ ( 𝑌  ∈  𝐵  →  𝑌  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 17 |  | elmapfn | ⊢ ( 𝑌  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) )  →  𝑌  Fn  ( 𝑁  ×  𝑁 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑌  ∈  𝐵  →  𝑌  Fn  ( 𝑁  ×  𝑁 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  Fn  ( 𝑁  ×  𝑁 ) ) | 
						
							| 20 | 1 2 | matrcl | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 21 |  | xpfi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 22 | 21 | anidms | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V )  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 24 | 20 23 | syl | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 26 |  | inidm | ⊢ ( ( 𝑁  ×  𝑁 )  ∩  ( 𝑁  ×  𝑁 ) )  =  ( 𝑁  ×  𝑁 ) | 
						
							| 27 |  | df-ov | ⊢ ( 𝐼 𝑋 𝐽 )  =  ( 𝑋 ‘ 〈 𝐼 ,  𝐽 〉 ) | 
						
							| 28 | 27 | eqcomi | ⊢ ( 𝑋 ‘ 〈 𝐼 ,  𝐽 〉 )  =  ( 𝐼 𝑋 𝐽 ) | 
						
							| 29 | 28 | a1i | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  〈 𝐼 ,  𝐽 〉  ∈  ( 𝑁  ×  𝑁 ) )  →  ( 𝑋 ‘ 〈 𝐼 ,  𝐽 〉 )  =  ( 𝐼 𝑋 𝐽 ) ) | 
						
							| 30 |  | df-ov | ⊢ ( 𝐼 𝑌 𝐽 )  =  ( 𝑌 ‘ 〈 𝐼 ,  𝐽 〉 ) | 
						
							| 31 | 30 | eqcomi | ⊢ ( 𝑌 ‘ 〈 𝐼 ,  𝐽 〉 )  =  ( 𝐼 𝑌 𝐽 ) | 
						
							| 32 | 31 | a1i | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  〈 𝐼 ,  𝐽 〉  ∈  ( 𝑁  ×  𝑁 ) )  →  ( 𝑌 ‘ 〈 𝐼 ,  𝐽 〉 )  =  ( 𝐼 𝑌 𝐽 ) ) | 
						
							| 33 | 15 19 25 25 26 29 32 | ofval | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  〈 𝐼 ,  𝐽 〉  ∈  ( 𝑁  ×  𝑁 ) )  →  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 〈 𝐼 ,  𝐽 〉 )  =  ( ( 𝐼 𝑋 𝐽 )  +  ( 𝐼 𝑌 𝐽 ) ) ) | 
						
							| 34 | 10 33 | sylan2br | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  →  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 〈 𝐼 ,  𝐽 〉 )  =  ( ( 𝐼 𝑋 𝐽 )  +  ( 𝐼 𝑌 𝐽 ) ) ) | 
						
							| 35 | 7 9 34 | 3eqtrd | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  →  ( 𝐼 ( 𝑋  ✚  𝑌 ) 𝐽 )  =  ( ( 𝐼 𝑋 𝐽 )  +  ( 𝐼 𝑌 𝐽 ) ) ) |