| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matbas.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
matbas.g |
⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) |
| 3 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
| 4 |
|
3re |
⊢ 3 ∈ ℝ |
| 5 |
|
3lt5 |
⊢ 3 < 5 |
| 6 |
4 5
|
gtneii |
⊢ 5 ≠ 3 |
| 7 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
| 8 |
|
mulrndx |
⊢ ( .r ‘ ndx ) = 3 |
| 9 |
7 8
|
neeq12i |
⊢ ( ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx ) ↔ 5 ≠ 3 ) |
| 10 |
6 9
|
mpbir |
⊢ ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx ) |
| 11 |
3 10
|
setsnid |
⊢ ( Scalar ‘ 𝐺 ) = ( Scalar ‘ ( 𝐺 sSet 〈 ( .r ‘ ndx ) , ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 〉 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
| 13 |
1 2 12
|
matval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝐴 = ( 𝐺 sSet 〈 ( .r ‘ ndx ) , ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 〉 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ( 𝐺 sSet 〈 ( .r ‘ ndx ) , ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 〉 ) ) ) |
| 15 |
11 14
|
eqtr4id |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐴 ) ) |