Metamath Proof Explorer


Theorem matsubg

Description: The matrix ring has the same addition as its underlying group. (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses matsubg.a 𝐴 = ( 𝑁 Mat 𝑅 )
matsubg.g 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) )
Assertion matsubg ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( -g𝐺 ) = ( -g𝐴 ) )

Proof

Step Hyp Ref Expression
1 matsubg.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 matsubg.g 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) )
3 1 2 matbas ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐴 ) )
4 1 2 matplusg ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( +g𝐺 ) = ( +g𝐴 ) )
5 3 4 grpsubpropd ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( -g𝐺 ) = ( -g𝐴 ) )