Step |
Hyp |
Ref |
Expression |
1 |
|
mattpos1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mattpos1.o |
⊢ 1 = ( 1r ‘ 𝐴 ) |
3 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
4 |
3
|
tposmpo |
⊢ tpos ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
5 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
7 |
1 5 6
|
mat1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
8 |
7
|
tposeqd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos ( 1r ‘ 𝐴 ) = tpos ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
9 |
1 5 6
|
mat1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
10 |
|
equcom |
⊢ ( 𝑗 = 𝑖 ↔ 𝑖 = 𝑗 ) |
11 |
10
|
a1i |
⊢ ( ( 𝑗 ∈ 𝑁 ∧ 𝑖 ∈ 𝑁 ) → ( 𝑗 = 𝑖 ↔ 𝑖 = 𝑗 ) ) |
12 |
11
|
ifbid |
⊢ ( ( 𝑗 ∈ 𝑁 ∧ 𝑖 ∈ 𝑁 ) → if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
13 |
12
|
mpoeq3ia |
⊢ ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
14 |
9 13
|
eqtrdi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
15 |
4 8 14
|
3eqtr4a |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) ) |
16 |
2
|
tposeqi |
⊢ tpos 1 = tpos ( 1r ‘ 𝐴 ) |
17 |
15 16 2
|
3eqtr4g |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos 1 = 1 ) |