Metamath Proof Explorer


Theorem mattpos1

Description: The transposition of the identity matrix is the identity matrix. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses mattpos1.a 𝐴 = ( 𝑁 Mat 𝑅 )
mattpos1.o 1 = ( 1r𝐴 )
Assertion mattpos1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos 1 = 1 )

Proof

Step Hyp Ref Expression
1 mattpos1.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mattpos1.o 1 = ( 1r𝐴 )
3 eqid ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
4 3 tposmpo tpos ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = ( 𝑗𝑁 , 𝑖𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
5 eqid ( 1r𝑅 ) = ( 1r𝑅 )
6 eqid ( 0g𝑅 ) = ( 0g𝑅 )
7 1 5 6 mat1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
8 7 tposeqd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos ( 1r𝐴 ) = tpos ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
9 1 5 6 mat1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) = ( 𝑗𝑁 , 𝑖𝑁 ↦ if ( 𝑗 = 𝑖 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
10 equcom ( 𝑗 = 𝑖𝑖 = 𝑗 )
11 10 a1i ( ( 𝑗𝑁𝑖𝑁 ) → ( 𝑗 = 𝑖𝑖 = 𝑗 ) )
12 11 ifbid ( ( 𝑗𝑁𝑖𝑁 ) → if ( 𝑗 = 𝑖 , ( 1r𝑅 ) , ( 0g𝑅 ) ) = if ( 𝑖 = 𝑗 , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
13 12 mpoeq3ia ( 𝑗𝑁 , 𝑖𝑁 ↦ if ( 𝑗 = 𝑖 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = ( 𝑗𝑁 , 𝑖𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
14 9 13 eqtrdi ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) = ( 𝑗𝑁 , 𝑖𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
15 4 8 14 3eqtr4a ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos ( 1r𝐴 ) = ( 1r𝐴 ) )
16 2 tposeqi tpos 1 = tpos ( 1r𝐴 )
17 15 16 2 3eqtr4g ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos 1 = 1 )