| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mattpos1.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mattpos1.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 4 | 3 | tposmpo | ⊢ tpos  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑗  ∈  𝑁 ,  𝑖  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 7 | 1 5 6 | mat1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 8 | 7 | tposeqd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  tpos  ( 1r ‘ 𝐴 )  =  tpos  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 9 | 1 5 6 | mat1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  =  ( 𝑗  ∈  𝑁 ,  𝑖  ∈  𝑁  ↦  if ( 𝑗  =  𝑖 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 10 |  | equcom | ⊢ ( 𝑗  =  𝑖  ↔  𝑖  =  𝑗 ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑗  ∈  𝑁  ∧  𝑖  ∈  𝑁 )  →  ( 𝑗  =  𝑖  ↔  𝑖  =  𝑗 ) ) | 
						
							| 12 | 11 | ifbid | ⊢ ( ( 𝑗  ∈  𝑁  ∧  𝑖  ∈  𝑁 )  →  if ( 𝑗  =  𝑖 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 13 | 12 | mpoeq3ia | ⊢ ( 𝑗  ∈  𝑁 ,  𝑖  ∈  𝑁  ↦  if ( 𝑗  =  𝑖 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑗  ∈  𝑁 ,  𝑖  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 14 | 9 13 | eqtrdi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  =  ( 𝑗  ∈  𝑁 ,  𝑖  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 15 | 4 8 14 | 3eqtr4a | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  tpos  ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 16 | 2 | tposeqi | ⊢ tpos   1   =  tpos  ( 1r ‘ 𝐴 ) | 
						
							| 17 | 15 16 2 | 3eqtr4g | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  tpos   1   =   1  ) |