| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mattposm.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mattposm.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | mattposm.t | ⊢  ·   =  ( .r ‘ 𝐴 ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑅  ∈  CRing ) | 
						
							| 7 | 1 2 | matrcl | ⊢ ( 𝑌  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝑌  ∈  𝐵  →  𝑁  ∈  Fin ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 10 | 1 5 2 | matbas2i | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 12 | 1 5 2 | matbas2i | ⊢ ( 𝑌  ∈  𝐵  →  𝑌  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 14 | 4 4 5 6 9 9 9 11 13 | mamutpos | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  tpos  ( 𝑋 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) 𝑌 )  =  ( tpos  𝑌 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) tpos  𝑋 ) ) | 
						
							| 15 | 1 4 | matmulr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 16 | 9 6 15 | syl2anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 17 | 3 16 | eqtr4id | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →   ·   =  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) ) | 
						
							| 18 | 17 | oveqd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  𝑌 )  =  ( 𝑋 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) 𝑌 ) ) | 
						
							| 19 | 18 | tposeqd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  tpos  ( 𝑋  ·  𝑌 )  =  tpos  ( 𝑋 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) 𝑌 ) ) | 
						
							| 20 | 17 | oveqd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( tpos  𝑌  ·  tpos  𝑋 )  =  ( tpos  𝑌 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) tpos  𝑋 ) ) | 
						
							| 21 | 14 19 20 | 3eqtr4d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  tpos  ( 𝑋  ·  𝑌 )  =  ( tpos  𝑌  ·  tpos  𝑋 ) ) |