Step |
Hyp |
Ref |
Expression |
1 |
|
mattposcl.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mattposcl.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
1 3 2
|
matbas2i |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
5 |
|
elmapi |
⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
7 |
|
frel |
⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) → Rel 𝑀 ) |
8 |
6 7
|
syl |
⊢ ( 𝑀 ∈ 𝐵 → Rel 𝑀 ) |
9 |
|
relxp |
⊢ Rel ( 𝑁 × 𝑁 ) |
10 |
6
|
fdmd |
⊢ ( 𝑀 ∈ 𝐵 → dom 𝑀 = ( 𝑁 × 𝑁 ) ) |
11 |
10
|
releqd |
⊢ ( 𝑀 ∈ 𝐵 → ( Rel dom 𝑀 ↔ Rel ( 𝑁 × 𝑁 ) ) ) |
12 |
9 11
|
mpbiri |
⊢ ( 𝑀 ∈ 𝐵 → Rel dom 𝑀 ) |
13 |
|
tpostpos2 |
⊢ ( ( Rel 𝑀 ∧ Rel dom 𝑀 ) → tpos tpos 𝑀 = 𝑀 ) |
14 |
8 12 13
|
syl2anc |
⊢ ( 𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀 ) |