| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mattposvs.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mattposvs.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | mattposvs.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | mattposvs.v | ⊢  ·   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 | 1 2 | matrcl | ⊢ ( 𝑌  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( 𝑌  ∈  𝐵  →  𝑁  ∈  Fin ) | 
						
							| 7 |  | sqxpexg | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑁  ×  𝑁 )  ∈  V ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑌  ∈  𝐵  →  ( 𝑁  ×  𝑁 )  ∈  V ) | 
						
							| 9 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 10 |  | xpexg | ⊢ ( ( ( 𝑁  ×  𝑁 )  ∈  V  ∧  { 𝑋 }  ∈  V )  →  ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∈  V ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( 𝑌  ∈  𝐵  →  ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∈  V ) | 
						
							| 12 |  | oftpos | ⊢ ( ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∈  V  ∧  𝑌  ∈  𝐵 )  →  tpos  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) 𝑌 )  =  ( tpos  ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) tpos  𝑌 ) ) | 
						
							| 13 | 11 12 | mpancom | ⊢ ( 𝑌  ∈  𝐵  →  tpos  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) 𝑌 )  =  ( tpos  ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) tpos  𝑌 ) ) | 
						
							| 14 |  | tposconst | ⊢ tpos  ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  =  ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } ) | 
						
							| 15 | 14 | oveq1i | ⊢ ( tpos  ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) tpos  𝑌 )  =  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) tpos  𝑌 ) | 
						
							| 16 | 13 15 | eqtrdi | ⊢ ( 𝑌  ∈  𝐵  →  tpos  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) 𝑌 )  =  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) tpos  𝑌 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  tpos  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) 𝑌 )  =  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) tpos  𝑌 ) ) | 
						
							| 18 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑁  ×  𝑁 )  =  ( 𝑁  ×  𝑁 ) | 
						
							| 20 | 1 2 3 4 18 19 | matvsca2 | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  𝑌 )  =  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) 𝑌 ) ) | 
						
							| 21 | 20 | tposeqd | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  tpos  ( 𝑋  ·  𝑌 )  =  tpos  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) 𝑌 ) ) | 
						
							| 22 | 1 2 | mattposcl | ⊢ ( 𝑌  ∈  𝐵  →  tpos  𝑌  ∈  𝐵 ) | 
						
							| 23 | 1 2 3 4 18 19 | matvsca2 | ⊢ ( ( 𝑋  ∈  𝐾  ∧  tpos  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  tpos  𝑌 )  =  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) tpos  𝑌 ) ) | 
						
							| 24 | 22 23 | sylan2 | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  tpos  𝑌 )  =  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) tpos  𝑌 ) ) | 
						
							| 25 | 17 21 24 | 3eqtr4d | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  tpos  ( 𝑋  ·  𝑌 )  =  ( 𝑋  ·  tpos  𝑌 ) ) |