Step |
Hyp |
Ref |
Expression |
1 |
|
matunit.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
matunit.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
3 |
|
matunit.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
matunit.u |
⊢ 𝑈 = ( Unit ‘ 𝐴 ) |
5 |
|
matunit.v |
⊢ 𝑉 = ( Unit ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
10 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
12 |
2 1 3 6
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
14 |
2 1 3 6
|
mdetf |
⊢ ( 𝑅 ∈ CRing → 𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → 𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
16 |
1 3
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
17 |
16
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → 𝑁 ∈ Fin ) |
19 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
20 |
18 11 19
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → 𝐴 ∈ Ring ) |
21 |
|
eqid |
⊢ ( invr ‘ 𝐴 ) = ( invr ‘ 𝐴 ) |
22 |
4 21 3
|
ringinvcl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑀 ∈ 𝑈 ) → ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ∈ 𝐵 ) |
23 |
20 22
|
sylancom |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ∈ 𝐵 ) |
24 |
15 23
|
ffvelrnd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑅 ) ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
26 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
27 |
4 21 25 26
|
unitrinv |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑀 ∈ 𝑈 ) → ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) = ( 1r ‘ 𝐴 ) ) |
28 |
20 27
|
sylancom |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) = ( 1r ‘ 𝐴 ) ) |
29 |
28
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( 𝐷 ‘ ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) = ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) |
30 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → 𝑅 ∈ CRing ) |
31 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → 𝑀 ∈ 𝐵 ) |
32 |
1 3 2 7 25
|
mdetmul |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) = ( ( 𝐷 ‘ 𝑀 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) ) |
33 |
30 31 23 32
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( 𝐷 ‘ ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) = ( ( 𝐷 ‘ 𝑀 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) ) |
34 |
2 1 26 8
|
mdet1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝑅 ) ) |
35 |
30 18 34
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝑅 ) ) |
36 |
29 33 35
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( ( 𝐷 ‘ 𝑀 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) = ( 1r ‘ 𝑅 ) ) |
37 |
4 21 25 26
|
unitlinv |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑀 ∈ 𝑈 ) → ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) = ( 1r ‘ 𝐴 ) ) |
38 |
20 37
|
sylancom |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) = ( 1r ‘ 𝐴 ) ) |
39 |
38
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( 𝐷 ‘ ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) = ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) |
40 |
1 3 2 7 25
|
mdetmul |
⊢ ( ( 𝑅 ∈ CRing ∧ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) = ( ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) ) |
41 |
30 23 31 40
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( 𝐷 ‘ ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) = ( ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) ) |
42 |
39 41 35
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) |
43 |
6 7 8 5 9 11 13 24 36 42
|
invrvald |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ∧ ( ( invr ‘ 𝑅 ) ‘ ( 𝐷 ‘ 𝑀 ) ) = ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) ) |
44 |
43
|
simpld |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑀 ∈ 𝑈 ) → ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) |
45 |
|
eqid |
⊢ ( 𝑁 maAdju 𝑅 ) = ( 𝑁 maAdju 𝑅 ) |
46 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
47 |
1 45 2 3 4 5 9 21 46
|
matinv |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝑀 ∈ 𝑈 ∧ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) = ( ( ( invr ‘ 𝑅 ) ‘ ( 𝐷 ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝐴 ) ( ( 𝑁 maAdju 𝑅 ) ‘ 𝑀 ) ) ) ) |
48 |
47
|
simpld |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑀 ∈ 𝑈 ) |
49 |
48
|
3expa |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑀 ∈ 𝑈 ) |
50 |
44 49
|
impbida |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑀 ∈ 𝑈 ↔ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) ) |