| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matunit.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | matunit.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 3 |  | matunit.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | matunit.u | ⊢ 𝑈  =  ( Unit ‘ 𝐴 ) | 
						
							| 5 |  | matunit.v | ⊢ 𝑉  =  ( Unit ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( invr ‘ 𝑅 )  =  ( invr ‘ 𝑅 ) | 
						
							| 10 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  𝑅  ∈  Ring ) | 
						
							| 12 | 2 1 3 6 | mdetcl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐷 ‘ 𝑀 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( 𝐷 ‘ 𝑀 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 14 | 2 1 3 6 | mdetf | ⊢ ( 𝑅  ∈  CRing  →  𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 1 3 | matrcl | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( 𝑀  ∈  𝐵  →  𝑁  ∈  Fin ) | 
						
							| 18 | 17 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  𝑁  ∈  Fin ) | 
						
							| 19 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 20 | 18 11 19 | syl2anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  𝐴  ∈  Ring ) | 
						
							| 21 |  | eqid | ⊢ ( invr ‘ 𝐴 )  =  ( invr ‘ 𝐴 ) | 
						
							| 22 | 4 21 3 | ringinvcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑀  ∈  𝑈 )  →  ( ( invr ‘ 𝐴 ) ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 23 | 20 22 | sylancom | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( ( invr ‘ 𝐴 ) ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 24 | 15 23 | ffvelcdmd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 25 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 26 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 27 | 4 21 25 26 | unitrinv | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑀  ∈  𝑈 )  →  ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 28 | 20 27 | sylancom | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( 𝐷 ‘ ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) )  =  ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) | 
						
							| 30 |  | simpll | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  𝑅  ∈  CRing ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  𝑀  ∈  𝐵 ) | 
						
							| 32 | 1 3 2 7 25 | mdetmul | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( ( invr ‘ 𝐴 ) ‘ 𝑀 )  ∈  𝐵 )  →  ( 𝐷 ‘ ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) )  =  ( ( 𝐷 ‘ 𝑀 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) ) | 
						
							| 33 | 30 31 23 32 | syl3anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( 𝐷 ‘ ( 𝑀 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) )  =  ( ( 𝐷 ‘ 𝑀 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) ) | 
						
							| 34 | 2 1 26 8 | mdet1 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ( 𝐷 ‘ ( 1r ‘ 𝐴 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 35 | 30 18 34 | syl2anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( 𝐷 ‘ ( 1r ‘ 𝐴 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 36 | 29 33 35 | 3eqtr3d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( ( 𝐷 ‘ 𝑀 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 37 | 4 21 25 26 | unitlinv | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑀  ∈  𝑈 )  →  ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 38 | 20 37 | sylancom | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( 𝐷 ‘ ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) )  =  ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) | 
						
							| 40 | 1 3 2 7 25 | mdetmul | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( ( invr ‘ 𝐴 ) ‘ 𝑀 )  ∈  𝐵  ∧  𝑀  ∈  𝐵 )  →  ( 𝐷 ‘ ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) )  =  ( ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) ) | 
						
							| 41 | 30 23 31 40 | syl3anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( 𝐷 ‘ ( ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) )  =  ( ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) ) | 
						
							| 42 | 39 41 35 | 3eqtr3d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 43 | 6 7 8 5 9 11 13 24 36 42 | invrvald | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( ( 𝐷 ‘ 𝑀 )  ∈  𝑉  ∧  ( ( invr ‘ 𝑅 ) ‘ ( 𝐷 ‘ 𝑀 ) )  =  ( 𝐷 ‘ ( ( invr ‘ 𝐴 ) ‘ 𝑀 ) ) ) ) | 
						
							| 44 | 43 | simpld | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑀  ∈  𝑈 )  →  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 ) | 
						
							| 45 |  | eqid | ⊢ ( 𝑁  maAdju  𝑅 )  =  ( 𝑁  maAdju  𝑅 ) | 
						
							| 46 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 47 | 1 45 2 3 4 5 9 21 46 | matinv | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝑀  ∈  𝑈  ∧  ( ( invr ‘ 𝐴 ) ‘ 𝑀 )  =  ( ( ( invr ‘ 𝑅 ) ‘ ( 𝐷 ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝐴 ) ( ( 𝑁  maAdju  𝑅 ) ‘ 𝑀 ) ) ) ) | 
						
							| 48 | 47 | simpld | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝑀  ∈  𝑈 ) | 
						
							| 49 | 48 | 3expa | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝑀  ∈  𝑈 ) | 
						
							| 50 | 44 49 | impbida | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑀  ∈  𝑈  ↔  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 ) ) |