| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matvsca2.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | matvsca2.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | matvsca2.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | matvsca2.v | ⊢  ·   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | matvsca2.t | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | matvsca2.c | ⊢ 𝐶  =  ( 𝑁  ×  𝑁 ) | 
						
							| 7 | 1 2 | matrcl | ⊢ ( 𝑌  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) )  =  ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) | 
						
							| 10 | 1 9 | matvsca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V )  →  (  ·𝑠  ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) )  =  (  ·𝑠  ‘ 𝐴 ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  (  ·𝑠  ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) )  =  (  ·𝑠  ‘ 𝐴 ) ) | 
						
							| 12 | 11 4 | eqtr4di | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  (  ·𝑠  ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) )  =   ·  ) | 
						
							| 13 | 12 | oveqd | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 (  ·𝑠  ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) ) 𝑌 )  =  ( 𝑋  ·  𝑌 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) )  =  ( Base ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 15 | 8 | simpld | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 16 |  | xpfi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 17 | 15 15 16 | syl2anc | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐾 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 20 | 1 9 | matbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V )  →  ( Base ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 21 | 8 20 | syl | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( Base ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 22 | 21 2 | eqtr4di | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( Base ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) )  =  𝐵 ) | 
						
							| 23 | 19 22 | eleqtrrd | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  ( Base ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) ) ) | 
						
							| 24 |  | eqid | ⊢ (  ·𝑠  ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) )  =  (  ·𝑠  ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 25 | 9 14 3 17 18 23 24 5 | frlmvscafval | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 (  ·𝑠  ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) ) 𝑌 )  =  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ×  𝑌 ) ) | 
						
							| 26 | 6 | xpeq1i | ⊢ ( 𝐶  ×  { 𝑋 } )  =  ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } ) | 
						
							| 27 | 26 | oveq1i | ⊢ ( ( 𝐶  ×  { 𝑋 } )  ∘f   ×  𝑌 )  =  ( ( ( 𝑁  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ×  𝑌 ) | 
						
							| 28 | 25 27 | eqtr4di | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 (  ·𝑠  ‘ ( 𝑅  freeLMod  ( 𝑁  ×  𝑁 ) ) ) 𝑌 )  =  ( ( 𝐶  ×  { 𝑋 } )  ∘f   ×  𝑌 ) ) | 
						
							| 29 | 13 28 | eqtr3d | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  𝑌 )  =  ( ( 𝐶  ×  { 𝑋 } )  ∘f   ×  𝑌 ) ) |