Step |
Hyp |
Ref |
Expression |
1 |
|
matvsca2.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
matvsca2.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
matvsca2.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
matvsca2.v |
⊢ · = ( ·𝑠 ‘ 𝐴 ) |
5 |
|
matvsca2.t |
⊢ × = ( .r ‘ 𝑅 ) |
6 |
|
matvsca2.c |
⊢ 𝐶 = ( 𝑁 × 𝑁 ) |
7 |
1 2
|
matrcl |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
9 |
|
eqid |
⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) |
10 |
1 9
|
matvsca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( ·𝑠 ‘ 𝐴 ) ) |
11 |
8 10
|
syl |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( ·𝑠 ‘ 𝐴 ) ) |
12 |
11 4
|
eqtr4di |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = · ) |
13 |
12
|
oveqd |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) 𝑌 ) = ( 𝑋 · 𝑌 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) |
15 |
8
|
simpld |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
16 |
|
xpfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
17 |
15 15 16
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
18 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐾 ) |
19 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
20 |
1 9
|
matbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
21 |
8 20
|
syl |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
22 |
21 2
|
eqtr4di |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = 𝐵 ) |
23 |
19 22
|
eleqtrrd |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
24 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) |
25 |
9 14 3 17 18 23 24 5
|
frlmvscafval |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) ) |
26 |
6
|
xpeq1i |
⊢ ( 𝐶 × { 𝑋 } ) = ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) |
27 |
26
|
oveq1i |
⊢ ( ( 𝐶 × { 𝑋 } ) ∘f × 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) |
28 |
25 27
|
eqtr4di |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) 𝑌 ) = ( ( 𝐶 × { 𝑋 } ) ∘f × 𝑌 ) ) |
29 |
13 28
|
eqtr3d |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( ( 𝐶 × { 𝑋 } ) ∘f × 𝑌 ) ) |