| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matvscl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 2 |
|
matvscl.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 3 |
|
matvscl.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 4 |
|
matvscl.s |
⊢ · = ( ·𝑠 ‘ 𝐴 ) |
| 5 |
2
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ LMod ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐴 ∈ LMod ) |
| 7 |
2
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 9 |
1 8
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 10 |
9
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐶 ∈ 𝐾 ↔ 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 11 |
10
|
biimpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐶 ∈ 𝐾 → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 12 |
11
|
adantrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 14 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 15 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
| 17 |
3 15 4 16
|
lmodvscl |
⊢ ( ( 𝐴 ∈ LMod ∧ 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐶 · 𝑋 ) ∈ 𝐵 ) |
| 18 |
6 13 14 17
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝐶 · 𝑋 ) ∈ 𝐵 ) |