| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mavmul0.t | 
							⊢  ·   =  ( 𝑅  maVecMul  〈 𝑁 ,  𝑁 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  𝑅  ∈  𝑉 )  | 
						
						
							| 6 | 
							
								
							 | 
							0fi | 
							⊢ ∅  ∈  Fin  | 
						
						
							| 7 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑁  =  ∅  →  ( 𝑁  ∈  Fin  ↔  ∅  ∈  Fin ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpbiri | 
							⊢ ( 𝑁  =  ∅  →  𝑁  ∈  Fin )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  𝑁  ∈  Fin )  | 
						
						
							| 10 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 11 | 
							
								
							 | 
							snidg | 
							⊢ ( ∅  ∈  V  →  ∅  ∈  { ∅ } )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mp1i | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ∅  ∈  { ∅ } )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑁  =  ∅  →  ( 𝑁  Mat  𝑅 )  =  ( ∅  Mat  𝑅 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ( 𝑁  Mat  𝑅 )  =  ( ∅  Mat  𝑅 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveq2d | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( ∅  Mat  𝑅 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							mat0dimbas0 | 
							⊢ ( 𝑅  ∈  𝑉  →  ( Base ‘ ( ∅  Mat  𝑅 ) )  =  { ∅ } )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ( Base ‘ ( ∅  Mat  𝑅 ) )  =  { ∅ } )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							eqtrd | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  { ∅ } )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							eleqtrrd | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ∅  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑁  =  ∅  →  ∅  =  ∅ )  | 
						
						
							| 21 | 
							
								
							 | 
							el1o | 
							⊢ ( ∅  ∈  1o  ↔  ∅  =  ∅ )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylibr | 
							⊢ ( 𝑁  =  ∅  →  ∅  ∈  1o )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑁  =  ∅  →  ( ( Base ‘ 𝑅 )  ↑m  𝑁 )  =  ( ( Base ‘ 𝑅 )  ↑m  ∅ ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fvex | 
							⊢ ( Base ‘ 𝑅 )  ∈  V  | 
						
						
							| 25 | 
							
								
							 | 
							map0e | 
							⊢ ( ( Base ‘ 𝑅 )  ∈  V  →  ( ( Base ‘ 𝑅 )  ↑m  ∅ )  =  1o )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							mp1i | 
							⊢ ( 𝑁  =  ∅  →  ( ( Base ‘ 𝑅 )  ↑m  ∅ )  =  1o )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							eqtrd | 
							⊢ ( 𝑁  =  ∅  →  ( ( Base ‘ 𝑅 )  ↑m  𝑁 )  =  1o )  | 
						
						
							| 28 | 
							
								22 27
							 | 
							eleqtrrd | 
							⊢ ( 𝑁  =  ∅  →  ∅  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝑁 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantr | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ∅  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝑁 ) )  | 
						
						
							| 30 | 
							
								2 1 3 4 5 9 19 29
							 | 
							mavmulval | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ( ∅  ·  ∅ )  =  ( 𝑖  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ∅ 𝑗 ) ( .r ‘ 𝑅 ) ( ∅ ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							mpteq1 | 
							⊢ ( 𝑁  =  ∅  →  ( 𝑖  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ∅ 𝑗 ) ( .r ‘ 𝑅 ) ( ∅ ‘ 𝑗 ) ) ) ) )  =  ( 𝑖  ∈  ∅  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ∅ 𝑗 ) ( .r ‘ 𝑅 ) ( ∅ ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ( 𝑖  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ∅ 𝑗 ) ( .r ‘ 𝑅 ) ( ∅ ‘ 𝑗 ) ) ) ) )  =  ( 𝑖  ∈  ∅  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ∅ 𝑗 ) ( .r ‘ 𝑅 ) ( ∅ ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							mpt0 | 
							⊢ ( 𝑖  ∈  ∅  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ∅ 𝑗 ) ( .r ‘ 𝑅 ) ( ∅ ‘ 𝑗 ) ) ) ) )  =  ∅  | 
						
						
							| 34 | 
							
								32 33
							 | 
							eqtrdi | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ( 𝑖  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ∅ 𝑗 ) ( .r ‘ 𝑅 ) ( ∅ ‘ 𝑗 ) ) ) ) )  =  ∅ )  | 
						
						
							| 35 | 
							
								30 34
							 | 
							eqtrd | 
							⊢ ( ( 𝑁  =  ∅  ∧  𝑅  ∈  𝑉 )  →  ( ∅  ·  ∅ )  =  ∅ )  |