Step |
Hyp |
Ref |
Expression |
1 |
|
mavmul0.t |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
2 |
|
oveq12 |
⊢ ( ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) → ( 𝑋 · 𝑌 ) = ( ∅ · ∅ ) ) |
3 |
1
|
mavmul0 |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ∅ · ∅ ) = ∅ ) |
4 |
2 3
|
sylan9eq |
⊢ ( ( ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ∧ ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) ) → ( 𝑋 · 𝑌 ) = ∅ ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
|
simpr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
8 |
|
0fin |
⊢ ∅ ∈ Fin |
9 |
|
eleq1 |
⊢ ( 𝑁 = ∅ → ( 𝑁 ∈ Fin ↔ ∅ ∈ Fin ) ) |
10 |
8 9
|
mpbiri |
⊢ ( 𝑁 = ∅ → 𝑁 ∈ Fin ) |
11 |
10
|
adantr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
12 |
1 5 6 7 11 11
|
mvmulfval |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → · = ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) ) |
13 |
12
|
dmeqd |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → dom · = dom ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) ) |
14 |
|
0ex |
⊢ ∅ ∈ V |
15 |
|
eleq1 |
⊢ ( 𝑁 = ∅ → ( 𝑁 ∈ V ↔ ∅ ∈ V ) ) |
16 |
14 15
|
mpbiri |
⊢ ( 𝑁 = ∅ → 𝑁 ∈ V ) |
17 |
16
|
mptexd |
⊢ ( 𝑁 = ∅ → ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V ) |
18 |
17
|
adantr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ∧ 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V ) |
20 |
19
|
ralrimivva |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ∀ 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ∀ 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V ) |
21 |
|
eqid |
⊢ ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) = ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) |
22 |
21
|
dmmpoga |
⊢ ( ∀ 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ∀ 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V → dom ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) = ( ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) × ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) ) |
23 |
20 22
|
syl |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) = ( ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) × ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) ) |
24 |
|
id |
⊢ ( 𝑁 = ∅ → 𝑁 = ∅ ) |
25 |
24 24
|
xpeq12d |
⊢ ( 𝑁 = ∅ → ( 𝑁 × 𝑁 ) = ( ∅ × ∅ ) ) |
26 |
|
0xp |
⊢ ( ∅ × ∅ ) = ∅ |
27 |
25 26
|
eqtrdi |
⊢ ( 𝑁 = ∅ → ( 𝑁 × 𝑁 ) = ∅ ) |
28 |
27
|
oveq2d |
⊢ ( 𝑁 = ∅ → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( ( Base ‘ 𝑅 ) ↑m ∅ ) ) |
29 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
30 |
|
map0e |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
31 |
29 30
|
mp1i |
⊢ ( 𝑁 = ∅ → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
32 |
28 31
|
eqtrd |
⊢ ( 𝑁 = ∅ → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = 1o ) |
33 |
32
|
adantr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = 1o ) |
34 |
|
df1o2 |
⊢ 1o = { ∅ } |
35 |
33 34
|
eqtrdi |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = { ∅ } ) |
36 |
|
oveq2 |
⊢ ( 𝑁 = ∅ → ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) = ( ( Base ‘ 𝑅 ) ↑m ∅ ) ) |
37 |
29 30
|
mp1i |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
38 |
37 34
|
eqtrdi |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = { ∅ } ) |
39 |
36 38
|
sylan9eq |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) = { ∅ } ) |
40 |
35 39
|
xpeq12d |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) × ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) = ( { ∅ } × { ∅ } ) ) |
41 |
13 23 40
|
3eqtrd |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → dom · = ( { ∅ } × { ∅ } ) ) |
42 |
|
elsni |
⊢ ( 𝑋 ∈ { ∅ } → 𝑋 = ∅ ) |
43 |
|
elsni |
⊢ ( 𝑌 ∈ { ∅ } → 𝑌 = ∅ ) |
44 |
42 43
|
anim12i |
⊢ ( ( 𝑋 ∈ { ∅ } ∧ 𝑌 ∈ { ∅ } ) → ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) |
45 |
44
|
con3i |
⊢ ( ¬ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) → ¬ ( 𝑋 ∈ { ∅ } ∧ 𝑌 ∈ { ∅ } ) ) |
46 |
|
ndmovg |
⊢ ( ( dom · = ( { ∅ } × { ∅ } ) ∧ ¬ ( 𝑋 ∈ { ∅ } ∧ 𝑌 ∈ { ∅ } ) ) → ( 𝑋 · 𝑌 ) = ∅ ) |
47 |
41 45 46
|
syl2anr |
⊢ ( ( ¬ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ∧ ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) ) → ( 𝑋 · 𝑌 ) = ∅ ) |
48 |
4 47
|
pm2.61ian |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( 𝑋 · 𝑌 ) = ∅ ) |