Metamath Proof Explorer


Theorem mavmulfv

Description: A cell/element in the vector resulting from a multiplication of a vector with a square matrix. (Contributed by AV, 6-Dec-2018) (Revised by AV, 18-Feb-2019) (Revised by AV, 23-Feb-2019)

Ref Expression
Hypotheses mavmulval.a 𝐴 = ( 𝑁 Mat 𝑅 )
mavmulval.m × = ( 𝑅 maVecMul ⟨ 𝑁 , 𝑁 ⟩ )
mavmulval.b 𝐵 = ( Base ‘ 𝑅 )
mavmulval.t · = ( .r𝑅 )
mavmulval.r ( 𝜑𝑅𝑉 )
mavmulval.n ( 𝜑𝑁 ∈ Fin )
mavmulval.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐴 ) )
mavmulval.y ( 𝜑𝑌 ∈ ( 𝐵m 𝑁 ) )
mavmulfv.i ( 𝜑𝐼𝑁 )
Assertion mavmulfv ( 𝜑 → ( ( 𝑋 × 𝑌 ) ‘ 𝐼 ) = ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mavmulval.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mavmulval.m × = ( 𝑅 maVecMul ⟨ 𝑁 , 𝑁 ⟩ )
3 mavmulval.b 𝐵 = ( Base ‘ 𝑅 )
4 mavmulval.t · = ( .r𝑅 )
5 mavmulval.r ( 𝜑𝑅𝑉 )
6 mavmulval.n ( 𝜑𝑁 ∈ Fin )
7 mavmulval.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐴 ) )
8 mavmulval.y ( 𝜑𝑌 ∈ ( 𝐵m 𝑁 ) )
9 mavmulfv.i ( 𝜑𝐼𝑁 )
10 1 2 3 4 5 6 7 8 mavmulval ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑖𝑁 ↦ ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) ) )
11 oveq1 ( 𝑖 = 𝐼 → ( 𝑖 𝑋 𝑗 ) = ( 𝐼 𝑋 𝑗 ) )
12 11 adantl ( ( 𝜑𝑖 = 𝐼 ) → ( 𝑖 𝑋 𝑗 ) = ( 𝐼 𝑋 𝑗 ) )
13 12 oveq1d ( ( 𝜑𝑖 = 𝐼 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) = ( ( 𝐼 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) )
14 13 mpteq2dv ( ( 𝜑𝑖 = 𝐼 ) → ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) = ( 𝑗𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) )
15 14 oveq2d ( ( 𝜑𝑖 = 𝐼 ) → ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) )
16 ovexd ( 𝜑 → ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) ∈ V )
17 10 15 9 16 fvmptd ( 𝜑 → ( ( 𝑋 × 𝑌 ) ‘ 𝐼 ) = ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑌𝑗 ) ) ) ) )