Step |
Hyp |
Ref |
Expression |
1 |
|
mavmulval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mavmulval.m |
⊢ × = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
3 |
|
mavmulval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
mavmulval.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
mavmulval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
6 |
|
mavmulval.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
7 |
|
mavmulval.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
8 |
|
mavmulval.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m 𝑁 ) ) |
9 |
1 3
|
matbas2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝐵 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
10 |
6 5 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
11 |
7 10
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑁 ) ) ) |
12 |
2 3 4 5 6 6 11 8
|
mvmulval |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑖 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 ‘ 𝑗 ) ) ) ) ) ) |