Description: The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mavmumamul1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
mavmumamul1.m | ⊢ × = ( 𝑅 maMul 〈 𝑁 , 𝑁 , { ∅ } 〉 ) | ||
mavmumamul1.t | ⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) | ||
mavmumamul1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
mavmumamul1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
mavmumamul1.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
mavmumamul1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐴 ) ) | ||
mavmumamul1.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m 𝑁 ) ) | ||
mavmumamul1.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × { ∅ } ) ) ) | ||
Assertion | mavmumamul1 | ⊢ ( 𝜑 → ( ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) → ∀ 𝑖 ∈ 𝑁 ( ( 𝑋 · 𝑌 ) ‘ 𝑖 ) = ( 𝑖 ( 𝑋 × 𝑍 ) ∅ ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mavmumamul1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
2 | mavmumamul1.m | ⊢ × = ( 𝑅 maMul 〈 𝑁 , 𝑁 , { ∅ } 〉 ) | |
3 | mavmumamul1.t | ⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) | |
4 | mavmumamul1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
5 | mavmumamul1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
6 | mavmumamul1.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
7 | mavmumamul1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐴 ) ) | |
8 | mavmumamul1.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m 𝑁 ) ) | |
9 | mavmumamul1.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × { ∅ } ) ) ) | |
10 | 1 4 | matbas2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐵 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
11 | 6 5 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
12 | 7 11 | eleqtrrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑁 ) ) ) |
13 | 2 3 4 5 6 6 12 8 9 | mvmumamul1 | ⊢ ( 𝜑 → ( ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) → ∀ 𝑖 ∈ 𝑁 ( ( 𝑋 · 𝑌 ) ‘ 𝑖 ) = ( 𝑖 ( 𝑋 × 𝑍 ) ∅ ) ) ) |