Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
2 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
3 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
5 |
4
|
addid1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 + 0 ) = 𝐴 ) |
6 |
|
iftrue |
⊢ ( 0 ≤ 𝐴 → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 𝐴 ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 𝐴 ) |
8 |
|
le0neg2 |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ - 𝐴 ≤ 0 ) ) |
9 |
8
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ≤ 0 ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → - 𝐴 ≤ 0 ) |
11 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → 0 ≤ - 𝐴 ) |
12 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → - 𝐴 ∈ ℝ ) |
14 |
|
0re |
⊢ 0 ∈ ℝ |
15 |
|
letri3 |
⊢ ( ( - 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐴 = 0 ↔ ( - 𝐴 ≤ 0 ∧ 0 ≤ - 𝐴 ) ) ) |
16 |
13 14 15
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → ( - 𝐴 = 0 ↔ ( - 𝐴 ≤ 0 ∧ 0 ≤ - 𝐴 ) ) ) |
17 |
10 11 16
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → - 𝐴 = 0 ) |
18 |
17
|
ifeq1da |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = if ( 0 ≤ - 𝐴 , 0 , 0 ) ) |
19 |
|
ifid |
⊢ if ( 0 ≤ - 𝐴 , 0 , 0 ) = 0 |
20 |
18 19
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = 0 ) |
21 |
7 20
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( 𝐴 + 0 ) ) |
22 |
|
absid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
23 |
5 21 22
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( abs ‘ 𝐴 ) ) |
24 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℂ ) |
25 |
24
|
negcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → - 𝐴 ∈ ℂ ) |
26 |
25
|
addid2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( 0 + - 𝐴 ) = - 𝐴 ) |
27 |
|
letri3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
28 |
14 27
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
29 |
28
|
biimprd |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) → 𝐴 = 0 ) ) |
30 |
29
|
impl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 = 0 ) |
31 |
30
|
ifeq1da |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = if ( 0 ≤ 𝐴 , 0 , 0 ) ) |
32 |
|
ifid |
⊢ if ( 0 ≤ 𝐴 , 0 , 0 ) = 0 |
33 |
31 32
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 0 ) |
34 |
|
le0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
35 |
34
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 0 ≤ - 𝐴 ) |
36 |
35
|
iftrued |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = - 𝐴 ) |
37 |
33 36
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( 0 + - 𝐴 ) ) |
38 |
|
absnid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
39 |
26 37 38
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( abs ‘ 𝐴 ) ) |
40 |
1 2 23 39
|
lecasei |
⊢ ( 𝐴 ∈ ℝ → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( abs ‘ 𝐴 ) ) |