| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red | ⊢ ( 𝐴  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 2 |  | id | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | iftrue | ⊢ ( 0  ≤  𝐴  →  if ( 0  ≤  𝐴 ,  𝐴 ,  0 )  =  𝐴 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  if ( 0  ≤  𝐴 ,  𝐴 ,  0 )  =  𝐴 ) | 
						
							| 5 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 6 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  - 𝐴  ∈  ℝ ) | 
						
							| 8 | 7 | rexrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  - 𝐴  ∈  ℝ* ) | 
						
							| 9 |  | le0neg2 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  ↔  - 𝐴  ≤  0 ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  - 𝐴  ≤  0 ) | 
						
							| 11 |  | xrmaxeq | ⊢ ( ( 0  ∈  ℝ*  ∧  - 𝐴  ∈  ℝ*  ∧  - 𝐴  ≤  0 )  →  if ( 0  ≤  - 𝐴 ,  - 𝐴 ,  0 )  =  0 ) | 
						
							| 12 | 5 8 10 11 | mp3an2i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  if ( 0  ≤  - 𝐴 ,  - 𝐴 ,  0 )  =  0 ) | 
						
							| 13 | 4 12 | oveq12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( if ( 0  ≤  𝐴 ,  𝐴 ,  0 )  −  if ( 0  ≤  - 𝐴 ,  - 𝐴 ,  0 ) )  =  ( 𝐴  −  0 ) ) | 
						
							| 14 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  ℂ ) | 
						
							| 16 | 15 | subid1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 𝐴  −  0 )  =  𝐴 ) | 
						
							| 17 | 13 16 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( if ( 0  ≤  𝐴 ,  𝐴 ,  0 )  −  if ( 0  ≤  - 𝐴 ,  - 𝐴 ,  0 ) )  =  𝐴 ) | 
						
							| 18 |  | rexr | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  𝐴  ∈  ℝ* ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  𝐴  ≤  0 ) | 
						
							| 21 |  | xrmaxeq | ⊢ ( ( 0  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝐴  ≤  0 )  →  if ( 0  ≤  𝐴 ,  𝐴 ,  0 )  =  0 ) | 
						
							| 22 | 5 19 20 21 | mp3an2i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  if ( 0  ≤  𝐴 ,  𝐴 ,  0 )  =  0 ) | 
						
							| 23 |  | le0neg1 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ≤  0  ↔  0  ≤  - 𝐴 ) ) | 
						
							| 24 | 23 | biimpa | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  0  ≤  - 𝐴 ) | 
						
							| 25 | 24 | iftrued | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  if ( 0  ≤  - 𝐴 ,  - 𝐴 ,  0 )  =  - 𝐴 ) | 
						
							| 26 | 22 25 | oveq12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  ( if ( 0  ≤  𝐴 ,  𝐴 ,  0 )  −  if ( 0  ≤  - 𝐴 ,  - 𝐴 ,  0 ) )  =  ( 0  −  - 𝐴 ) ) | 
						
							| 27 |  | df-neg | ⊢ - - 𝐴  =  ( 0  −  - 𝐴 ) | 
						
							| 28 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 29 | 28 | negnegd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  - - 𝐴  =  𝐴 ) | 
						
							| 30 | 27 29 | eqtr3id | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  ( 0  −  - 𝐴 )  =  𝐴 ) | 
						
							| 31 | 26 30 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  ( if ( 0  ≤  𝐴 ,  𝐴 ,  0 )  −  if ( 0  ≤  - 𝐴 ,  - 𝐴 ,  0 ) )  =  𝐴 ) | 
						
							| 32 | 1 2 17 31 | lecasei | ⊢ ( 𝐴  ∈  ℝ  →  ( if ( 0  ≤  𝐴 ,  𝐴 ,  0 )  −  if ( 0  ≤  - 𝐴 ,  - 𝐴 ,  0 ) )  =  𝐴 ) |