Metamath Proof Explorer


Theorem max1

Description: A number is less than or equal to the maximum of it and another. See also max1ALT . (Contributed by NM, 3-Apr-2005)

Ref Expression
Assertion max1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≤ if ( 𝐴𝐵 , 𝐵 , 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
2 rexr ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* )
3 xrmax1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → 𝐴 ≤ if ( 𝐴𝐵 , 𝐵 , 𝐴 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≤ if ( 𝐴𝐵 , 𝐵 , 𝐴 ) )