Metamath Proof Explorer


Theorem maxle

Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by NM, 29-Sep-2005)

Ref Expression
Assertion maxle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( if ( 𝐴𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ↔ ( 𝐴𝐶𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
2 rexr ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* )
3 rexr ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* )
4 xrmaxle ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( if ( 𝐴𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ↔ ( 𝐴𝐶𝐵𝐶 ) ) )
5 1 2 3 4 syl3an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( if ( 𝐴𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ↔ ( 𝐴𝐶𝐵𝐶 ) ) )