| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpfval.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | ssid | ⊢ 𝑋  ⊆  𝑋 | 
						
							| 3 | 1 | lpss | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  ⊆  𝑋 )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ⊆  𝑋 ) | 
						
							| 4 | 2 3 | mpan2 | ⊢ ( 𝐽  ∈  Top  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ⊆  𝑋 ) | 
						
							| 5 | 4 | sseld | ⊢ ( 𝐽  ∈  Top  →  ( 𝑃  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  →  𝑃  ∈  𝑋 ) ) | 
						
							| 6 | 5 | pm4.71rd | ⊢ ( 𝐽  ∈  Top  →  ( 𝑃  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  ( 𝑃  ∈  𝑋  ∧  𝑃  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 8 | 1 | islp | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  ⊆  𝑋 )  →  ( 𝑃  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  { 𝑃 } ) ) ) ) | 
						
							| 9 | 7 2 8 | sylancl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( 𝑃  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  { 𝑃 } ) ) ) ) | 
						
							| 10 |  | snssi | ⊢ ( 𝑃  ∈  𝑋  →  { 𝑃 }  ⊆  𝑋 ) | 
						
							| 11 | 1 | clsdif | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝑃 }  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  { 𝑃 } ) )  =  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 12 | 10 11 | sylan2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  { 𝑃 } ) )  =  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  { 𝑃 } ) )  ↔  𝑃  ∈  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) ) | 
						
							| 14 |  | eldif | ⊢ ( 𝑃  ∈  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) )  ↔  ( 𝑃  ∈  𝑋  ∧  ¬  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 15 | 14 | baib | ⊢ ( 𝑃  ∈  𝑋  →  ( 𝑃  ∈  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) )  ↔  ¬  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( 𝑃  ∈  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) )  ↔  ¬  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | 
						
							| 17 |  | snssi | ⊢ ( 𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  →  { 𝑃 }  ⊆  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  ∧  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  { 𝑃 }  ⊆  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) | 
						
							| 19 | 1 | ntrss2 | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝑃 }  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  ⊆  { 𝑃 } ) | 
						
							| 20 | 10 19 | sylan2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  ⊆  { 𝑃 } ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  ∧  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  ⊆  { 𝑃 } ) | 
						
							| 22 | 18 21 | eqssd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  ∧  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  { 𝑃 }  =  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) | 
						
							| 23 | 1 | ntropn | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝑃 }  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  ∈  𝐽 ) | 
						
							| 24 | 10 23 | sylan2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  ∈  𝐽 ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  ∧  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  ∈  𝐽 ) | 
						
							| 26 | 22 25 | eqeltrd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  ∧  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) )  →  { 𝑃 }  ∈  𝐽 ) | 
						
							| 27 |  | snidg | ⊢ ( 𝑃  ∈  𝑋  →  𝑃  ∈  { 𝑃 } ) | 
						
							| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  ∧  { 𝑃 }  ∈  𝐽 )  →  𝑃  ∈  { 𝑃 } ) | 
						
							| 29 |  | isopn3i | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝑃 }  ∈  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  =  { 𝑃 } ) | 
						
							| 30 | 29 | adantlr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  ∧  { 𝑃 }  ∈  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  =  { 𝑃 } ) | 
						
							| 31 | 28 30 | eleqtrrd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  ∧  { 𝑃 }  ∈  𝐽 )  →  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) | 
						
							| 32 | 26 31 | impbida | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( 𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  ↔  { 𝑃 }  ∈  𝐽 ) ) | 
						
							| 33 | 32 | notbid | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( ¬  𝑃  ∈  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } )  ↔  ¬  { 𝑃 }  ∈  𝐽 ) ) | 
						
							| 34 | 16 33 | bitrd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( 𝑃  ∈  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) )  ↔  ¬  { 𝑃 }  ∈  𝐽 ) ) | 
						
							| 35 | 9 13 34 | 3bitrd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑃  ∈  𝑋 )  →  ( 𝑃  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  ¬  { 𝑃 }  ∈  𝐽 ) ) | 
						
							| 36 | 35 | pm5.32da | ⊢ ( 𝐽  ∈  Top  →  ( ( 𝑃  ∈  𝑋  ∧  𝑃  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) )  ↔  ( 𝑃  ∈  𝑋  ∧  ¬  { 𝑃 }  ∈  𝐽 ) ) ) | 
						
							| 37 | 6 36 | bitrd | ⊢ ( 𝐽  ∈  Top  →  ( 𝑃  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  ( 𝑃  ∈  𝑋  ∧  ¬  { 𝑃 }  ∈  𝐽 ) ) ) |