Metamath Proof Explorer


Theorem maxlt

Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by NM, 3-Aug-2007)

Ref Expression
Assertion maxlt ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( if ( 𝐴𝐵 , 𝐵 , 𝐴 ) < 𝐶 ↔ ( 𝐴 < 𝐶𝐵 < 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
2 rexr ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* )
3 rexr ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* )
4 xrmaxlt ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( if ( 𝐴𝐵 , 𝐵 , 𝐴 ) < 𝐶 ↔ ( 𝐴 < 𝐶𝐵 < 𝐶 ) ) )
5 1 2 3 4 syl3an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( if ( 𝐴𝐵 , 𝐵 , 𝐴 ) < 𝐶 ↔ ( 𝐴 < 𝐶𝐵 < 𝐶 ) ) )