Step |
Hyp |
Ref |
Expression |
1 |
|
maxprmfct.1 |
⊢ 𝑆 = { 𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁 } |
2 |
1
|
ssrab3 |
⊢ 𝑆 ⊆ ℙ |
3 |
|
prmz |
⊢ ( 𝑦 ∈ ℙ → 𝑦 ∈ ℤ ) |
4 |
3
|
ssriv |
⊢ ℙ ⊆ ℤ |
5 |
2 4
|
sstri |
⊢ 𝑆 ⊆ ℤ |
6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑆 ⊆ ℤ ) |
7 |
|
exprmfct |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ) |
8 |
|
breq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁 ) ) |
9 |
8 1
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁 ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑆 ↔ ∃ 𝑦 ( 𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁 ) ) |
11 |
|
n0 |
⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑆 ) |
12 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ ∃ 𝑦 ( 𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁 ) ) |
13 |
10 11 12
|
3bitr4ri |
⊢ ( ∃ 𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ 𝑆 ≠ ∅ ) |
14 |
7 13
|
sylib |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑆 ≠ ∅ ) |
15 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) |
16 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
17 |
3
|
anim1i |
⊢ ( ( 𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁 ) → ( 𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁 ) ) |
18 |
9 17
|
sylbi |
⊢ ( 𝑦 ∈ 𝑆 → ( 𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁 ) ) |
19 |
|
dvdsle |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁 ) ) |
20 |
19
|
expcom |
⊢ ( 𝑁 ∈ ℕ → ( 𝑦 ∈ ℤ → ( 𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁 ) ) ) |
21 |
20
|
impd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁 ) → 𝑦 ≤ 𝑁 ) ) |
22 |
18 21
|
syl5 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑦 ∈ 𝑆 → 𝑦 ≤ 𝑁 ) ) |
23 |
22
|
ralrimiv |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑁 ) |
24 |
16 23
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑁 ) |
25 |
|
brralrspcev |
⊢ ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑁 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
26 |
15 24 25
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
27 |
6 14 26
|
3jca |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
28 |
|
suprzcl2 |
⊢ ( ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) → sup ( 𝑆 , ℝ , < ) ∈ 𝑆 ) |
29 |
27 28
|
jccir |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ∧ sup ( 𝑆 , ℝ , < ) ∈ 𝑆 ) ) |