Metamath Proof Explorer


Theorem maxprmfct

Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Hypothesis maxprmfct.1 𝑆 = { 𝑧 ∈ ℙ ∣ 𝑧𝑁 }
Assertion maxprmfct ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝑆 𝑦𝑥 ) ∧ sup ( 𝑆 , ℝ , < ) ∈ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 maxprmfct.1 𝑆 = { 𝑧 ∈ ℙ ∣ 𝑧𝑁 }
2 1 ssrab3 𝑆 ⊆ ℙ
3 prmz ( 𝑦 ∈ ℙ → 𝑦 ∈ ℤ )
4 3 ssriv ℙ ⊆ ℤ
5 2 4 sstri 𝑆 ⊆ ℤ
6 5 a1i ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑆 ⊆ ℤ )
7 exprmfct ( 𝑁 ∈ ( ℤ ‘ 2 ) → ∃ 𝑦 ∈ ℙ 𝑦𝑁 )
8 breq1 ( 𝑧 = 𝑦 → ( 𝑧𝑁𝑦𝑁 ) )
9 8 1 elrab2 ( 𝑦𝑆 ↔ ( 𝑦 ∈ ℙ ∧ 𝑦𝑁 ) )
10 9 exbii ( ∃ 𝑦 𝑦𝑆 ↔ ∃ 𝑦 ( 𝑦 ∈ ℙ ∧ 𝑦𝑁 ) )
11 n0 ( 𝑆 ≠ ∅ ↔ ∃ 𝑦 𝑦𝑆 )
12 df-rex ( ∃ 𝑦 ∈ ℙ 𝑦𝑁 ↔ ∃ 𝑦 ( 𝑦 ∈ ℙ ∧ 𝑦𝑁 ) )
13 10 11 12 3bitr4ri ( ∃ 𝑦 ∈ ℙ 𝑦𝑁𝑆 ≠ ∅ )
14 7 13 sylib ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑆 ≠ ∅ )
15 eluzelz ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ∈ ℤ )
16 eluz2nn ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ∈ ℕ )
17 3 anim1i ( ( 𝑦 ∈ ℙ ∧ 𝑦𝑁 ) → ( 𝑦 ∈ ℤ ∧ 𝑦𝑁 ) )
18 9 17 sylbi ( 𝑦𝑆 → ( 𝑦 ∈ ℤ ∧ 𝑦𝑁 ) )
19 dvdsle ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑦𝑁𝑦𝑁 ) )
20 19 expcom ( 𝑁 ∈ ℕ → ( 𝑦 ∈ ℤ → ( 𝑦𝑁𝑦𝑁 ) ) )
21 20 impd ( 𝑁 ∈ ℕ → ( ( 𝑦 ∈ ℤ ∧ 𝑦𝑁 ) → 𝑦𝑁 ) )
22 18 21 syl5 ( 𝑁 ∈ ℕ → ( 𝑦𝑆𝑦𝑁 ) )
23 22 ralrimiv ( 𝑁 ∈ ℕ → ∀ 𝑦𝑆 𝑦𝑁 )
24 16 23 syl ( 𝑁 ∈ ( ℤ ‘ 2 ) → ∀ 𝑦𝑆 𝑦𝑁 )
25 brralrspcev ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑦𝑆 𝑦𝑁 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦𝑆 𝑦𝑥 )
26 15 24 25 syl2anc ( 𝑁 ∈ ( ℤ ‘ 2 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦𝑆 𝑦𝑥 )
27 6 14 26 3jca ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝑆 𝑦𝑥 ) )
28 suprzcl2 ( ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝑆 𝑦𝑥 ) → sup ( 𝑆 , ℝ , < ) ∈ 𝑆 )
29 27 28 jccir ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝑆 𝑦𝑥 ) ∧ sup ( 𝑆 , ℝ , < ) ∈ 𝑆 ) )