Metamath Proof Explorer


Theorem mbf0

Description: The empty function is measurable. (Contributed by Brendan Leahy, 28-Mar-2018)

Ref Expression
Assertion mbf0 ∅ ∈ MblFn

Proof

Step Hyp Ref Expression
1 0xp ( ∅ × { 1 } ) = ∅
2 0mbl ∅ ∈ dom vol
3 ax-1cn 1 ∈ ℂ
4 mbfconst ( ( ∅ ∈ dom vol ∧ 1 ∈ ℂ ) → ( ∅ × { 1 } ) ∈ MblFn )
5 2 3 4 mp2an ( ∅ × { 1 } ) ∈ MblFn
6 1 5 eqeltrri ∅ ∈ MblFn