Step |
Hyp |
Ref |
Expression |
1 |
|
mbfadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
3 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
5 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
6 |
|
mbff |
⊢ ( 𝐺 ∈ MblFn → 𝐺 : dom 𝐺 ⟶ ℂ ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
8 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn dom 𝐺 ) |
9 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
11 |
|
mbfdm |
⊢ ( 𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → dom 𝐺 ∈ dom vol ) |
13 |
|
eqid |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) |
14 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
15 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
16 |
5 8 10 12 13 14 15
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
17 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐹 ) |
18 |
|
ffvelrn |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
19 |
4 17 18
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
20 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
21 |
|
ffvelrn |
⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
22 |
7 20 21
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
23 |
19 22
|
readdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
24 |
23
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
25 |
|
inmbl |
⊢ ( ( dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol ) → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
26 |
10 12 25
|
syl2anc |
⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
27 |
19
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
28 |
22
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
29 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
30 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
31 |
26 27 28 29 30
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
32 |
24 31
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) = ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
33 |
|
inss1 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 |
34 |
|
resmpt |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
35 |
33 34
|
ax-mp |
⊢ ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
36 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
37 |
36 1
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
38 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
39 |
37 26 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
40 |
35 39
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
41 |
19
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
42 |
40 41
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
43 |
42
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
44 |
|
inss2 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 |
45 |
|
resmpt |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
46 |
44 45
|
ax-mp |
⊢ ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) |
47 |
7
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
48 |
47 2
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
49 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
50 |
48 26 49
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
51 |
46 50
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
52 |
22
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
53 |
51 52
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
54 |
53
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
55 |
27
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
56 |
28
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
57 |
43 54 55 56
|
mbfaddlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
58 |
32 57
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
59 |
19 22
|
imaddd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
60 |
59
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
61 |
19
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
62 |
22
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
63 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
64 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
65 |
26 61 62 63 64
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
66 |
60 65
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) = ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
67 |
42
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
68 |
53
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
69 |
61
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
70 |
62
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
71 |
67 68 69 70
|
mbfaddlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
72 |
66 71
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
73 |
19 22
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
74 |
73
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) ) ) |
75 |
58 72 74
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
76 |
16 75
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ MblFn ) |