| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfadd.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfadd.2 | ⊢ ( 𝜑  →  𝐺  ∈  MblFn ) | 
						
							| 3 |  | mbff | ⊢ ( 𝐹  ∈  MblFn  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 5 | 4 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 6 |  | mbff | ⊢ ( 𝐺  ∈  MblFn  →  𝐺 : dom  𝐺 ⟶ ℂ ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  𝐺 : dom  𝐺 ⟶ ℂ ) | 
						
							| 8 | 7 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  dom  𝐺 ) | 
						
							| 9 |  | mbfdm | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 10 | 1 9 | syl | ⊢ ( 𝜑  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 11 |  | mbfdm | ⊢ ( 𝐺  ∈  MblFn  →  dom  𝐺  ∈  dom  vol ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  dom  𝐺  ∈  dom  vol ) | 
						
							| 13 |  | eqid | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  =  ( dom  𝐹  ∩  dom  𝐺 ) | 
						
							| 14 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 15 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 16 | 5 8 10 12 13 14 15 | offval | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 17 |  | elinel1 | ⊢ ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  𝑥  ∈  dom  𝐹 ) | 
						
							| 18 |  | ffvelcdm | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 19 | 4 17 18 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 20 |  | elinel2 | ⊢ ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  𝑥  ∈  dom  𝐺 ) | 
						
							| 21 |  | ffvelcdm | ⊢ ( ( 𝐺 : dom  𝐺 ⟶ ℂ  ∧  𝑥  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 22 | 7 20 21 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 23 | 19 22 | readdd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  +  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 24 | 23 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  +  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 25 |  | inmbl | ⊢ ( ( dom  𝐹  ∈  dom  vol  ∧  dom  𝐺  ∈  dom  vol )  →  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol ) | 
						
							| 26 | 10 12 25 | syl2anc | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol ) | 
						
							| 27 | 19 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 28 | 22 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 29 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 30 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 31 | 26 27 28 29 30 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   +  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  +  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 32 | 24 31 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   +  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 33 |  | inss1 | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐹 | 
						
							| 34 |  | resmpt | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐹  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 35 | 33 34 | ax-mp | ⊢ ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 36 | 4 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 37 | 36 1 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 38 |  | mbfres | ⊢ ( ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn  ∧  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol )  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 39 | 37 26 38 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 40 | 35 39 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 41 | 19 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn  ↔  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn ) ) ) | 
						
							| 42 | 40 41 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn ) ) | 
						
							| 43 | 42 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 44 |  | inss2 | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐺 | 
						
							| 45 |  | resmpt | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐺  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 46 | 44 45 | ax-mp | ⊢ ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 47 | 7 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 48 | 47 2 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 49 |  | mbfres | ⊢ ( ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn  ∧  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol )  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 50 | 48 26 49 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 51 | 46 50 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 52 | 22 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn  ↔  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) ) ) | 
						
							| 53 | 51 52 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) ) | 
						
							| 54 | 53 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 55 | 27 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℝ ) | 
						
							| 56 | 28 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℝ ) | 
						
							| 57 | 43 54 55 56 | mbfaddlem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   +  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 58 | 32 57 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 59 | 19 22 | imaddd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  +  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 60 | 59 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  +  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 61 | 19 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 62 | 22 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 63 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 64 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 65 | 26 61 62 63 64 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   +  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  +  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 66 | 60 65 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   +  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 67 | 42 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 68 | 53 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 69 | 61 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℝ ) | 
						
							| 70 | 62 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℝ ) | 
						
							| 71 | 67 68 69 70 | mbfaddlem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   +  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 72 | 66 71 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 73 | 19 22 | addcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 74 | 73 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn  ↔  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) ) ) | 
						
							| 75 | 58 72 74 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 76 | 16 75 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 )  ∈  MblFn ) |