Metamath Proof Explorer


Theorem mbfconst

Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfconst ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ MblFn )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ℂ )
2 fconstmpt ( 𝐴 × { 𝐵 } ) = ( 𝑥𝐴𝐵 )
3 1 2 fmptd ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℂ )
4 mblss ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ )
5 4 adantr ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → 𝐴 ⊆ ℝ )
6 cnex ℂ ∈ V
7 reex ℝ ∈ V
8 elpm2r ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) )
9 6 7 8 mpanl12 ( ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) )
10 3 5 9 syl2anc ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) )
11 2 a1i ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) = ( 𝑥𝐴𝐵 ) )
12 ref ℜ : ℂ ⟶ ℝ
13 12 a1i ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℜ : ℂ ⟶ ℝ )
14 13 feqmptd ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℜ = ( 𝑦 ∈ ℂ ↦ ( ℜ ‘ 𝑦 ) ) )
15 fveq2 ( 𝑦 = 𝐵 → ( ℜ ‘ 𝑦 ) = ( ℜ ‘ 𝐵 ) )
16 1 11 14 15 fmptco ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝑥𝐴 ↦ ( ℜ ‘ 𝐵 ) ) )
17 fconstmpt ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) = ( 𝑥𝐴 ↦ ( ℜ ‘ 𝐵 ) )
18 16 17 eqtr4di ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) )
19 18 cnveqd ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) )
20 19 imaeq1d ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) = ( ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) “ 𝑦 ) )
21 recl ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ )
22 mbfconstlem ( ( 𝐴 ∈ dom vol ∧ ( ℜ ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol )
23 21 22 sylan2 ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol )
24 20 23 eqeltrd ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol )
25 imf ℑ : ℂ ⟶ ℝ
26 25 a1i ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℑ : ℂ ⟶ ℝ )
27 26 feqmptd ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℑ = ( 𝑦 ∈ ℂ ↦ ( ℑ ‘ 𝑦 ) ) )
28 fveq2 ( 𝑦 = 𝐵 → ( ℑ ‘ 𝑦 ) = ( ℑ ‘ 𝐵 ) )
29 1 11 27 28 fmptco ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝑥𝐴 ↦ ( ℑ ‘ 𝐵 ) ) )
30 fconstmpt ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) = ( 𝑥𝐴 ↦ ( ℑ ‘ 𝐵 ) )
31 29 30 eqtr4di ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) )
32 31 cnveqd ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) )
33 32 imaeq1d ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) = ( ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) “ 𝑦 ) )
34 imcl ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ )
35 mbfconstlem ( ( 𝐴 ∈ dom vol ∧ ( ℑ ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol )
36 34 35 sylan2 ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol )
37 33 36 eqeltrd ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol )
38 24 37 jca ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ∧ ( ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) )
39 38 ralrimivw ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ∀ 𝑦 ∈ ran (,) ( ( ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ∧ ( ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) )
40 ismbf1 ( ( 𝐴 × { 𝐵 } ) ∈ MblFn ↔ ( ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑦 ∈ ran (,) ( ( ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ∧ ( ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) ) )
41 10 39 40 sylanbrc ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ MblFn )