Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
2 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
3 |
1 2
|
fmptd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℂ ) |
4 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → 𝐴 ⊆ ℝ ) |
6 |
|
cnex |
⊢ ℂ ∈ V |
7 |
|
reex |
⊢ ℝ ∈ V |
8 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) ) |
9 |
6 7 8
|
mpanl12 |
⊢ ( ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) ) |
10 |
3 5 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) ) |
11 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
12 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
13 |
12
|
a1i |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℜ : ℂ ⟶ ℝ ) |
14 |
13
|
feqmptd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℜ = ( 𝑦 ∈ ℂ ↦ ( ℜ ‘ 𝑦 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ℜ ‘ 𝑦 ) = ( ℜ ‘ 𝐵 ) ) |
16 |
1 11 14 15
|
fmptco |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) |
17 |
|
fconstmpt |
⊢ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) |
18 |
16 17
|
eqtr4di |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) ) |
19 |
18
|
cnveqd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) = ◡ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) ) |
20 |
19
|
imaeq1d |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) = ( ◡ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) “ 𝑦 ) ) |
21 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
22 |
|
mbfconstlem |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( ℜ ‘ 𝐵 ) ∈ ℝ ) → ( ◡ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol ) |
23 |
21 22
|
sylan2 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol ) |
24 |
20 23
|
eqeltrd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) |
25 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
26 |
25
|
a1i |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℑ : ℂ ⟶ ℝ ) |
27 |
26
|
feqmptd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℑ = ( 𝑦 ∈ ℂ ↦ ( ℑ ‘ 𝑦 ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ℑ ‘ 𝑦 ) = ( ℑ ‘ 𝐵 ) ) |
29 |
1 11 27 28
|
fmptco |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) |
30 |
|
fconstmpt |
⊢ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) |
31 |
29 30
|
eqtr4di |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) ) |
32 |
31
|
cnveqd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) = ◡ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) ) |
33 |
32
|
imaeq1d |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) = ( ◡ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) “ 𝑦 ) ) |
34 |
|
imcl |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
35 |
|
mbfconstlem |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( ℑ ‘ 𝐵 ) ∈ ℝ ) → ( ◡ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol ) |
36 |
34 35
|
sylan2 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol ) |
37 |
33 36
|
eqeltrd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) |
38 |
24 37
|
jca |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) ) |
39 |
38
|
ralrimivw |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ∀ 𝑦 ∈ ran (,) ( ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) ) |
40 |
|
ismbf1 |
⊢ ( ( 𝐴 × { 𝐵 } ) ∈ MblFn ↔ ( ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑦 ∈ ran (,) ( ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) ) ) |
41 |
10 39 40
|
sylanbrc |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ MblFn ) |