Metamath Proof Explorer


Theorem mbfconstlem

Description: Lemma for mbfconst and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfconstlem ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol )

Proof

Step Hyp Ref Expression
1 cnvimass ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ⊆ dom ( 𝐴 × { 𝐶 } )
2 1 a1i ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ⊆ dom ( 𝐴 × { 𝐶 } ) )
3 cnvimarndm ( ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) = dom ( 𝐴 × { 𝐶 } )
4 fconst6g ( 𝐶𝐵 → ( 𝐴 × { 𝐶 } ) : 𝐴𝐵 )
5 4 adantl ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴𝐵 )
6 frn ( ( 𝐴 × { 𝐶 } ) : 𝐴𝐵 → ran ( 𝐴 × { 𝐶 } ) ⊆ 𝐵 )
7 imass2 ( ran ( 𝐴 × { 𝐶 } ) ⊆ 𝐵 → ( ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) ⊆ ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) )
8 5 6 7 3syl ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → ( ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) ⊆ ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) )
9 3 8 eqsstrrid ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → dom ( 𝐴 × { 𝐶 } ) ⊆ ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) )
10 2 9 eqssd ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = dom ( 𝐴 × { 𝐶 } ) )
11 fconstg ( 𝐶 ∈ ℝ → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } )
12 11 ad2antlr ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } )
13 12 fdmd ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → dom ( 𝐴 × { 𝐶 } ) = 𝐴 )
14 10 13 eqtrd ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = 𝐴 )
15 simpll ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → 𝐴 ∈ dom vol )
16 14 15 eqeltrd ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶𝐵 ) → ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol )
17 11 ad2antlr ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } )
18 incom ( { 𝐶 } ∩ 𝐵 ) = ( 𝐵 ∩ { 𝐶 } )
19 simpr ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶𝐵 ) → ¬ 𝐶𝐵 )
20 disjsn ( ( 𝐵 ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶𝐵 )
21 19 20 sylibr ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶𝐵 ) → ( 𝐵 ∩ { 𝐶 } ) = ∅ )
22 18 21 syl5eq ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶𝐵 ) → ( { 𝐶 } ∩ 𝐵 ) = ∅ )
23 fimacnvdisj ( ( ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ∧ ( { 𝐶 } ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = ∅ )
24 17 22 23 syl2anc ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶𝐵 ) → ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = ∅ )
25 0mbl ∅ ∈ dom vol
26 24 25 eqeltrdi ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶𝐵 ) → ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol )
27 16 26 pm2.61dan ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol )