Step |
Hyp |
Ref |
Expression |
1 |
|
cnvimass |
⊢ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ⊆ dom ( 𝐴 × { 𝐶 } ) |
2 |
1
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ⊆ dom ( 𝐴 × { 𝐶 } ) ) |
3 |
|
cnvimarndm |
⊢ ( ◡ ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) = dom ( 𝐴 × { 𝐶 } ) |
4 |
|
fconst6g |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ 𝐵 ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ 𝐵 ) |
6 |
|
frn |
⊢ ( ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ 𝐵 → ran ( 𝐴 × { 𝐶 } ) ⊆ 𝐵 ) |
7 |
|
imass2 |
⊢ ( ran ( 𝐴 × { 𝐶 } ) ⊆ 𝐵 → ( ◡ ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) ⊆ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ) |
8 |
5 6 7
|
3syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) ⊆ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ) |
9 |
3 8
|
eqsstrrid |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → dom ( 𝐴 × { 𝐶 } ) ⊆ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ) |
10 |
2 9
|
eqssd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = dom ( 𝐴 × { 𝐶 } ) ) |
11 |
|
fconstg |
⊢ ( 𝐶 ∈ ℝ → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ) |
13 |
12
|
fdmd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → dom ( 𝐴 × { 𝐶 } ) = 𝐴 ) |
14 |
10 13
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = 𝐴 ) |
15 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ dom vol ) |
16 |
14 15
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |
17 |
11
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ) |
18 |
|
incom |
⊢ ( { 𝐶 } ∩ 𝐵 ) = ( 𝐵 ∩ { 𝐶 } ) |
19 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ¬ 𝐶 ∈ 𝐵 ) |
20 |
|
disjsn |
⊢ ( ( 𝐵 ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶 ∈ 𝐵 ) |
21 |
19 20
|
sylibr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( 𝐵 ∩ { 𝐶 } ) = ∅ ) |
22 |
18 21
|
syl5eq |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( { 𝐶 } ∩ 𝐵 ) = ∅ ) |
23 |
|
fimacnvdisj |
⊢ ( ( ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ∧ ( { 𝐶 } ∩ 𝐵 ) = ∅ ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = ∅ ) |
24 |
17 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = ∅ ) |
25 |
|
0mbl |
⊢ ∅ ∈ dom vol |
26 |
24 25
|
eqeltrdi |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |
27 |
16 26
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |