| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvimass |
⊢ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ⊆ dom ( 𝐴 × { 𝐶 } ) |
| 2 |
1
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ⊆ dom ( 𝐴 × { 𝐶 } ) ) |
| 3 |
|
cnvimarndm |
⊢ ( ◡ ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) = dom ( 𝐴 × { 𝐶 } ) |
| 4 |
|
fconst6g |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ 𝐵 ) |
| 5 |
4
|
adantl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ 𝐵 ) |
| 6 |
|
frn |
⊢ ( ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ 𝐵 → ran ( 𝐴 × { 𝐶 } ) ⊆ 𝐵 ) |
| 7 |
|
imass2 |
⊢ ( ran ( 𝐴 × { 𝐶 } ) ⊆ 𝐵 → ( ◡ ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) ⊆ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ) |
| 8 |
5 6 7
|
3syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) ⊆ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ) |
| 9 |
3 8
|
eqsstrrid |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → dom ( 𝐴 × { 𝐶 } ) ⊆ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ) |
| 10 |
2 9
|
eqssd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = dom ( 𝐴 × { 𝐶 } ) ) |
| 11 |
|
fconstg |
⊢ ( 𝐶 ∈ ℝ → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ) |
| 12 |
11
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ) |
| 13 |
12
|
fdmd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → dom ( 𝐴 × { 𝐶 } ) = 𝐴 ) |
| 14 |
10 13
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = 𝐴 ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ dom vol ) |
| 16 |
14 15
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |
| 17 |
11
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ) |
| 18 |
|
incom |
⊢ ( { 𝐶 } ∩ 𝐵 ) = ( 𝐵 ∩ { 𝐶 } ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ¬ 𝐶 ∈ 𝐵 ) |
| 20 |
|
disjsn |
⊢ ( ( 𝐵 ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶 ∈ 𝐵 ) |
| 21 |
19 20
|
sylibr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( 𝐵 ∩ { 𝐶 } ) = ∅ ) |
| 22 |
18 21
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( { 𝐶 } ∩ 𝐵 ) = ∅ ) |
| 23 |
|
fimacnvdisj |
⊢ ( ( ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ∧ ( { 𝐶 } ∩ 𝐵 ) = ∅ ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = ∅ ) |
| 24 |
17 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = ∅ ) |
| 25 |
|
0mbl |
⊢ ∅ ∈ dom vol |
| 26 |
24 25
|
eqeltrdi |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |
| 27 |
16 26
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |