Step |
Hyp |
Ref |
Expression |
1 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
2 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
3 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
4 |
1 2 3
|
sylancr |
⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
5 |
|
fimacnv |
⊢ ( ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) = dom 𝐹 ) |
6 |
4 5
|
syl |
⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) = dom 𝐹 ) |
7 |
|
imaeq2 |
⊢ ( 𝑥 = ℝ → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) = ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = ℝ → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ↔ ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) ∈ dom vol ) ) |
9 |
|
ismbf1 |
⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
10 |
|
simpl |
⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) → ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
12 |
9 11
|
simplbiim |
⊢ ( 𝐹 ∈ MblFn → ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
13 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
14 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
15 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
16 |
14 15
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
17 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
18 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
19 |
|
fnovrn |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ (,) +∞ ) ∈ ran (,) ) |
20 |
16 17 18 19
|
mp3an |
⊢ ( -∞ (,) +∞ ) ∈ ran (,) |
21 |
13 20
|
eqeltrri |
⊢ ℝ ∈ ran (,) |
22 |
21
|
a1i |
⊢ ( 𝐹 ∈ MblFn → ℝ ∈ ran (,) ) |
23 |
8 12 22
|
rspcdva |
⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) ∈ dom vol ) |
24 |
6 23
|
eqeltrrd |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |