Metamath Proof Explorer


Theorem mbfdm

Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfdm ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol )

Proof

Step Hyp Ref Expression
1 ref ℜ : ℂ ⟶ ℝ
2 mbff ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ )
3 fco ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ )
4 1 2 3 sylancr ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ )
5 fimacnv ( ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ( ℜ ∘ 𝐹 ) “ ℝ ) = dom 𝐹 )
6 4 5 syl ( 𝐹 ∈ MblFn → ( ( ℜ ∘ 𝐹 ) “ ℝ ) = dom 𝐹 )
7 imaeq2 ( 𝑥 = ℝ → ( ( ℜ ∘ 𝐹 ) “ 𝑥 ) = ( ( ℜ ∘ 𝐹 ) “ ℝ ) )
8 7 eleq1d ( 𝑥 = ℝ → ( ( ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ↔ ( ( ℜ ∘ 𝐹 ) “ ℝ ) ∈ dom vol ) )
9 ismbf1 ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) )
10 simpl ( ( ( ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) → ( ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol )
11 10 ralimi ( ∀ 𝑥 ∈ ran (,) ( ( ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) → ∀ 𝑥 ∈ ran (,) ( ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol )
12 9 11 simplbiim ( 𝐹 ∈ MblFn → ∀ 𝑥 ∈ ran (,) ( ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol )
13 ioomax ( -∞ (,) +∞ ) = ℝ
14 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
15 ffn ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) )
16 14 15 ax-mp (,) Fn ( ℝ* × ℝ* )
17 mnfxr -∞ ∈ ℝ*
18 pnfxr +∞ ∈ ℝ*
19 fnovrn ( ( (,) Fn ( ℝ* × ℝ* ) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ (,) +∞ ) ∈ ran (,) )
20 16 17 18 19 mp3an ( -∞ (,) +∞ ) ∈ ran (,)
21 13 20 eqeltrri ℝ ∈ ran (,)
22 21 a1i ( 𝐹 ∈ MblFn → ℝ ∈ ran (,) )
23 8 12 22 rspcdva ( 𝐹 ∈ MblFn → ( ( ℜ ∘ 𝐹 ) “ ℝ ) ∈ dom vol )
24 6 23 eqeltrrd ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol )