Description: The domain of a measurable function is a subset of the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | mbfdmssre | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbf1 | ⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) | |
2 | 1 | simplbi | ⊢ ( 𝐹 ∈ MblFn → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
3 | elpmi2 | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → dom 𝐹 ⊆ ℝ ) | |
4 | 2 3 | syl | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ ) |