| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfeqa.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 2 |  | mbfeqa.2 | ⊢ ( 𝜑  →  ( vol* ‘ 𝐴 )  =  0 ) | 
						
							| 3 |  | mbfeqa.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝐶  =  𝐷 ) | 
						
							| 4 |  | mbfeqa.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | mbfeqa.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐷  ∈  ℂ ) | 
						
							| 6 | 3 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( ℜ ‘ 𝐶 )  =  ( ℜ ‘ 𝐷 ) ) | 
						
							| 7 | 4 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ℜ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 8 | 5 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ℜ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 9 | 1 2 6 7 8 | mbfeqalem2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  ( ℜ ‘ 𝐶 ) )  ∈  MblFn  ↔  ( 𝑥  ∈  𝐵  ↦  ( ℜ ‘ 𝐷 ) )  ∈  MblFn ) ) | 
						
							| 10 | 3 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  𝐴 ) )  →  ( ℑ ‘ 𝐶 )  =  ( ℑ ‘ 𝐷 ) ) | 
						
							| 11 | 4 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ℑ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 12 | 5 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ℑ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 13 | 1 2 10 11 12 | mbfeqalem2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  ( ℑ ‘ 𝐶 ) )  ∈  MblFn  ↔  ( 𝑥  ∈  𝐵  ↦  ( ℑ ‘ 𝐷 ) )  ∈  MblFn ) ) | 
						
							| 14 | 9 13 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐵  ↦  ( ℜ ‘ 𝐶 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ↦  ( ℑ ‘ 𝐶 ) )  ∈  MblFn )  ↔  ( ( 𝑥  ∈  𝐵  ↦  ( ℜ ‘ 𝐷 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ↦  ( ℑ ‘ 𝐷 ) )  ∈  MblFn ) ) ) | 
						
							| 15 | 4 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  MblFn  ↔  ( ( 𝑥  ∈  𝐵  ↦  ( ℜ ‘ 𝐶 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ↦  ( ℑ ‘ 𝐶 ) )  ∈  MblFn ) ) ) | 
						
							| 16 | 5 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  𝐷 )  ∈  MblFn  ↔  ( ( 𝑥  ∈  𝐵  ↦  ( ℜ ‘ 𝐷 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ↦  ( ℑ ‘ 𝐷 ) )  ∈  MblFn ) ) ) | 
						
							| 17 | 14 15 16 | 3bitr4d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  MblFn  ↔  ( 𝑥  ∈  𝐵  ↦  𝐷 )  ∈  MblFn ) ) |