Step |
Hyp |
Ref |
Expression |
1 |
|
mbfeqa.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
mbfeqa.2 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) |
3 |
|
mbfeqa.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 𝐷 ) |
4 |
|
mbfeqalem.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) |
5 |
|
mbfeqalem.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℝ ) |
6 |
|
dfsymdif4 |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) △ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) = { 𝑧 ∣ ¬ ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) } |
7 |
|
eldif |
⊢ ( 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ∈ 𝐴 ) ) |
8 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
9 |
8 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℝ ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
11 |
10
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
12 |
8 9 11
|
syl2an2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
13 |
8 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐷 ∈ ℝ ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) |
15 |
14
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐷 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) = 𝐷 ) |
16 |
8 13 15
|
syl2an2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) = 𝐷 ) |
17 |
3 12 16
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) ) |
18 |
17
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) ) |
19 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) |
20 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) |
21 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) |
22 |
20 21
|
nfeq |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) |
23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) ) |
26 |
19 22 25
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) |
27 |
18 26
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) |
28 |
27
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) |
29 |
28
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) |
30 |
7 29
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) |
31 |
30
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) |
32 |
31
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
33 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℝ ) |
34 |
33
|
ffnd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) Fn 𝐵 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) Fn 𝐵 ) |
36 |
|
elpreima |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) Fn 𝐵 → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
38 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) : 𝐵 ⟶ ℝ ) |
39 |
38
|
ffnd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
41 |
|
elpreima |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
42 |
40 41
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
43 |
32 37 42
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) |
44 |
43
|
ex |
⊢ ( 𝜑 → ( ¬ 𝑧 ∈ 𝐴 → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ) |
45 |
44
|
con1d |
⊢ ( 𝜑 → ( ¬ ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) → 𝑧 ∈ 𝐴 ) ) |
46 |
45
|
abssdv |
⊢ ( 𝜑 → { 𝑧 ∣ ¬ ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) } ⊆ 𝐴 ) |
47 |
6 46
|
eqsstrid |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) △ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ 𝐴 ) |
48 |
47
|
difsymssdifssd |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ 𝐴 ) |
49 |
48 1
|
sstrd |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ ℝ ) |
50 |
|
ovolssnul |
⊢ ( ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) = 0 ) |
51 |
48 1 2 50
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) = 0 ) |
52 |
|
nulmbl |
⊢ ( ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) = 0 ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |
53 |
49 51 52
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |