Metamath Proof Explorer


Theorem mbfeqalem1

Description: Lemma for mbfeqalem2 . (Contributed by Mario Carneiro, 2-Sep-2014) (Revised by AV, 19-Aug-2022)

Ref Expression
Hypotheses mbfeqa.1 ( 𝜑𝐴 ⊆ ℝ )
mbfeqa.2 ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 )
mbfeqa.3 ( ( 𝜑𝑥 ∈ ( 𝐵𝐴 ) ) → 𝐶 = 𝐷 )
mbfeqalem.4 ( ( 𝜑𝑥𝐵 ) → 𝐶 ∈ ℝ )
mbfeqalem.5 ( ( 𝜑𝑥𝐵 ) → 𝐷 ∈ ℝ )
Assertion mbfeqalem1 ( 𝜑 → ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ∈ dom vol )

Proof

Step Hyp Ref Expression
1 mbfeqa.1 ( 𝜑𝐴 ⊆ ℝ )
2 mbfeqa.2 ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 )
3 mbfeqa.3 ( ( 𝜑𝑥 ∈ ( 𝐵𝐴 ) ) → 𝐶 = 𝐷 )
4 mbfeqalem.4 ( ( 𝜑𝑥𝐵 ) → 𝐶 ∈ ℝ )
5 mbfeqalem.5 ( ( 𝜑𝑥𝐵 ) → 𝐷 ∈ ℝ )
6 dfsymdif4 ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) △ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) = { 𝑧 ∣ ¬ ( 𝑧 ∈ ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) }
7 eldif ( 𝑧 ∈ ( 𝐵𝐴 ) ↔ ( 𝑧𝐵 ∧ ¬ 𝑧𝐴 ) )
8 eldifi ( 𝑥 ∈ ( 𝐵𝐴 ) → 𝑥𝐵 )
9 8 4 sylan2 ( ( 𝜑𝑥 ∈ ( 𝐵𝐴 ) ) → 𝐶 ∈ ℝ )
10 eqid ( 𝑥𝐵𝐶 ) = ( 𝑥𝐵𝐶 )
11 10 fvmpt2 ( ( 𝑥𝐵𝐶 ∈ ℝ ) → ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = 𝐶 )
12 8 9 11 syl2an2 ( ( 𝜑𝑥 ∈ ( 𝐵𝐴 ) ) → ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = 𝐶 )
13 8 5 sylan2 ( ( 𝜑𝑥 ∈ ( 𝐵𝐴 ) ) → 𝐷 ∈ ℝ )
14 eqid ( 𝑥𝐵𝐷 ) = ( 𝑥𝐵𝐷 )
15 14 fvmpt2 ( ( 𝑥𝐵𝐷 ∈ ℝ ) → ( ( 𝑥𝐵𝐷 ) ‘ 𝑥 ) = 𝐷 )
16 8 13 15 syl2an2 ( ( 𝜑𝑥 ∈ ( 𝐵𝐴 ) ) → ( ( 𝑥𝐵𝐷 ) ‘ 𝑥 ) = 𝐷 )
17 3 12 16 3eqtr4d ( ( 𝜑𝑥 ∈ ( 𝐵𝐴 ) ) → ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑥 ) )
18 17 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵𝐴 ) ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑥 ) )
19 nfv 𝑧 ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑥 )
20 nffvmpt1 𝑥 ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 )
21 nffvmpt1 𝑥 ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 )
22 20 21 nfeq 𝑥 ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 )
23 fveq2 ( 𝑥 = 𝑧 → ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) )
24 fveq2 ( 𝑥 = 𝑧 → ( ( 𝑥𝐵𝐷 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) )
25 23 24 eqeq12d ( 𝑥 = 𝑧 → ( ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑥 ) ↔ ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) ) )
26 19 22 25 cbvralw ( ∀ 𝑥 ∈ ( 𝐵𝐴 ) ( ( 𝑥𝐵𝐶 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ( 𝐵𝐴 ) ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) )
27 18 26 sylib ( 𝜑 → ∀ 𝑧 ∈ ( 𝐵𝐴 ) ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) )
28 27 r19.21bi ( ( 𝜑𝑧 ∈ ( 𝐵𝐴 ) ) → ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) = ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) )
29 28 eleq1d ( ( 𝜑𝑧 ∈ ( 𝐵𝐴 ) ) → ( ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) )
30 7 29 sylan2br ( ( 𝜑 ∧ ( 𝑧𝐵 ∧ ¬ 𝑧𝐴 ) ) → ( ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) )
31 30 anass1rs ( ( ( 𝜑 ∧ ¬ 𝑧𝐴 ) ∧ 𝑧𝐵 ) → ( ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) )
32 31 pm5.32da ( ( 𝜑 ∧ ¬ 𝑧𝐴 ) → ( ( 𝑧𝐵 ∧ ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ) ↔ ( 𝑧𝐵 ∧ ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) )
33 4 fmpttd ( 𝜑 → ( 𝑥𝐵𝐶 ) : 𝐵 ⟶ ℝ )
34 33 ffnd ( 𝜑 → ( 𝑥𝐵𝐶 ) Fn 𝐵 )
35 34 adantr ( ( 𝜑 ∧ ¬ 𝑧𝐴 ) → ( 𝑥𝐵𝐶 ) Fn 𝐵 )
36 elpreima ( ( 𝑥𝐵𝐶 ) Fn 𝐵 → ( 𝑧 ∈ ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ↔ ( 𝑧𝐵 ∧ ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ) ) )
37 35 36 syl ( ( 𝜑 ∧ ¬ 𝑧𝐴 ) → ( 𝑧 ∈ ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ↔ ( 𝑧𝐵 ∧ ( ( 𝑥𝐵𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ) ) )
38 5 fmpttd ( 𝜑 → ( 𝑥𝐵𝐷 ) : 𝐵 ⟶ ℝ )
39 38 ffnd ( 𝜑 → ( 𝑥𝐵𝐷 ) Fn 𝐵 )
40 39 adantr ( ( 𝜑 ∧ ¬ 𝑧𝐴 ) → ( 𝑥𝐵𝐷 ) Fn 𝐵 )
41 elpreima ( ( 𝑥𝐵𝐷 ) Fn 𝐵 → ( 𝑧 ∈ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ↔ ( 𝑧𝐵 ∧ ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) )
42 40 41 syl ( ( 𝜑 ∧ ¬ 𝑧𝐴 ) → ( 𝑧 ∈ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ↔ ( 𝑧𝐵 ∧ ( ( 𝑥𝐵𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) )
43 32 37 42 3bitr4d ( ( 𝜑 ∧ ¬ 𝑧𝐴 ) → ( 𝑧 ∈ ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) )
44 43 ex ( 𝜑 → ( ¬ 𝑧𝐴 → ( 𝑧 ∈ ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ) )
45 44 con1d ( 𝜑 → ( ¬ ( 𝑧 ∈ ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) → 𝑧𝐴 ) )
46 45 abssdv ( 𝜑 → { 𝑧 ∣ ¬ ( 𝑧 ∈ ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) } ⊆ 𝐴 )
47 6 46 eqsstrid ( 𝜑 → ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) △ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ⊆ 𝐴 )
48 47 difsymssdifssd ( 𝜑 → ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ⊆ 𝐴 )
49 48 1 sstrd ( 𝜑 → ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ⊆ ℝ )
50 ovolssnul ( ( ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ⊆ 𝐴𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ) = 0 )
51 48 1 2 50 syl3anc ( 𝜑 → ( vol* ‘ ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ) = 0 )
52 nulmbl ( ( ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ) = 0 ) → ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ∈ dom vol )
53 49 51 52 syl2anc ( 𝜑 → ( ( ( 𝑥𝐵𝐶 ) “ 𝑦 ) ∖ ( ( 𝑥𝐵𝐷 ) “ 𝑦 ) ) ∈ dom vol )