| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfeqa.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
mbfeqa.2 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) |
| 3 |
|
mbfeqa.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 𝐷 ) |
| 4 |
|
mbfeqalem.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) |
| 5 |
|
mbfeqalem.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℝ ) |
| 6 |
|
inundif |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) = ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) |
| 7 |
|
incom |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) |
| 8 |
|
dfin4 |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) |
| 9 |
7 8
|
eqtri |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) |
| 10 |
|
id |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol → ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) |
| 11 |
1 2 3 4 5
|
mbfeqalem1 |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |
| 12 |
|
difmbl |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ∧ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 13 |
10 11 12
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 14 |
9 13
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) |
| 15 |
3
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐷 = 𝐶 ) |
| 16 |
1 2 15 5 4
|
mbfeqalem1 |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) |
| 18 |
|
unmbl |
⊢ ( ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ∧ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) → ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 19 |
14 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 20 |
6 19
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) |
| 21 |
|
inundif |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) = ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) |
| 22 |
|
incom |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) |
| 23 |
|
dfin4 |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) |
| 24 |
22 23
|
eqtri |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) |
| 25 |
|
id |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol → ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) |
| 26 |
|
difmbl |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ∧ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 27 |
25 16 26
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 28 |
24 27
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |
| 29 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |
| 30 |
|
unmbl |
⊢ ( ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ∧ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) → ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 31 |
28 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 32 |
21 31
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) |
| 33 |
20 32
|
impbida |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ↔ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) ) |
| 34 |
33
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) ) |
| 35 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℝ ) |
| 36 |
|
ismbf |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℝ → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) ) |
| 38 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) : 𝐵 ⟶ ℝ ) |
| 39 |
|
ismbf |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) : 𝐵 ⟶ ℝ → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) ) |
| 41 |
34 37 40
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ) ) |