Metamath Proof Explorer


Theorem mbff

Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbff ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 ismbf1 ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) )
2 1 simplbi ( 𝐹 ∈ MblFn → 𝐹 ∈ ( ℂ ↑pm ℝ ) )
3 cnex ℂ ∈ V
4 reex ℝ ∈ V
5 3 4 elpm2 ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) )
6 5 simplbi ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ )
7 2 6 syl ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ )