Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | mbff | ⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbf1 | ⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) | |
2 | 1 | simplbi | ⊢ ( 𝐹 ∈ MblFn → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
3 | cnex | ⊢ ℂ ∈ V | |
4 | reex | ⊢ ℝ ∈ V | |
5 | 3 4 | elpm2 | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
6 | 5 | simplbi | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
7 | 2 6 | syl | ⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |