Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1flim.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfi1flim.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
3 |
|
iftrue |
⊢ ( 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) = ( 𝐹 ‘ 𝑦 ) ) |
4 |
3
|
mpteq2ia |
⊢ ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) |
5 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
6 |
5 1
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ) |
7 |
4 6
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
8 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
9 |
|
c0ex |
⊢ 0 ∈ V |
10 |
8 9
|
ifex |
⊢ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V |
11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V ) |
12 |
7 11
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
13 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
15 |
|
rembl |
⊢ ℝ ∈ dom vol |
16 |
15
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
17 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑦 ∈ 𝐴 ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑦 ∈ 𝐴 ) |
19 |
18
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) = 0 ) |
20 |
14 16 11 19 7
|
mbfss |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
21 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
22 |
|
0red |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝐴 ) → 0 ∈ ℝ ) |
23 |
21 22
|
ifclda |
⊢ ( 𝜑 → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ ℝ ) |
25 |
24
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) : ℝ ⟶ ℝ ) |
26 |
20 25
|
mbfi1flimlem |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) |
27 |
|
ssralv |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) |
28 |
14 27
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) ) |
29 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
30 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
32 |
30 31
|
ifbieq1d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
33 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
34 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
35 |
34 9
|
ifex |
⊢ if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
36 |
32 33 35
|
fvmpt |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
37 |
29 36
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
38 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
40 |
37 39
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
41 |
40
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
42 |
41
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
43 |
28 42
|
sylibd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
44 |
43
|
anim2d |
⊢ ( 𝜑 → ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
45 |
44
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝐴 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ‘ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
46 |
26 45
|
mpd |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |