| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfi1flim.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfi1flim.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 3 |  | iftrue | ⊢ ( 𝑦  ∈  𝐴  →  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 4 | 3 | mpteq2ia | ⊢ ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  =  ( 𝑦  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 5 | 2 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 6 | 5 1 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑦 ) )  ∈  MblFn ) | 
						
							| 7 | 4 6 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 8 |  | fvex | ⊢ ( 𝐹 ‘ 𝑦 )  ∈  V | 
						
							| 9 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 10 | 8 9 | ifex | ⊢ if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  V ) | 
						
							| 12 | 7 11 | mbfdm2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 13 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 15 |  | rembl | ⊢ ℝ  ∈  dom  vol | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  dom  vol ) | 
						
							| 17 |  | eldifn | ⊢ ( 𝑦  ∈  ( ℝ  ∖  𝐴 )  →  ¬  𝑦  ∈  𝐴 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℝ  ∖  𝐴 ) )  →  ¬  𝑦  ∈  𝐴 ) | 
						
							| 19 | 18 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℝ  ∖  𝐴 ) )  →  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  =  0 ) | 
						
							| 20 | 14 16 11 19 7 | mbfss | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 21 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 22 |  | 0red | ⊢ ( ( 𝜑  ∧  ¬  𝑦  ∈  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 23 | 21 22 | ifclda | ⊢ ( 𝜑  →  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ℝ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ℝ ) | 
						
							| 25 | 24 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) : ℝ ⟶ ℝ ) | 
						
							| 26 | 20 25 | mbfi1flimlem | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) | 
						
							| 27 |  | ssralv | ⊢ ( 𝐴  ⊆  ℝ  →  ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  →  ∀ 𝑥  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) | 
						
							| 28 | 14 27 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  →  ∀ 𝑥  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) | 
						
							| 29 | 14 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 30 |  | eleq1w | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  𝐴  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 32 | 30 31 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 34 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 35 | 34 9 | ifex | ⊢ if ( 𝑥  ∈  𝐴 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 36 | 32 33 35 | fvmpt | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  =  if ( 𝑥  ∈  𝐴 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 37 | 29 36 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  =  if ( 𝑥  ∈  𝐴 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 38 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 40 | 37 39 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 41 | 40 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 42 | 41 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 43 | 28 42 | sylibd | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  →  ∀ 𝑥  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 44 | 43 | anim2d | ⊢ ( 𝜑  →  ( ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  →  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 45 | 44 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  𝐴 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 46 | 26 45 | mpd | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) |