| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfi1flim.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfi1flimlem.2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 3 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 4 | 2 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 5 | 4 1 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) )  ∈  MblFn ) | 
						
							| 6 | 3 5 | mbfpos | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 7 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 8 |  | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ℝ ) | 
						
							| 9 | 3 7 8 | sylancl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ℝ ) | 
						
							| 10 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ℝ )  →  0  ≤  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 11 | 7 3 10 | sylancr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  0  ≤  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 12 |  | elrege0 | ⊢ ( if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ( 0 [,) +∞ )  ↔  ( if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 13 | 9 11 12 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 14 | 13 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 15 | 6 14 | mbfi1fseq | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) | 
						
							| 16 | 3 | renegcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  - ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 17 | 3 5 | mbfneg | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  - ( 𝐹 ‘ 𝑦 ) )  ∈  MblFn ) | 
						
							| 18 | 16 17 | mbfpos | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 19 |  | ifcl | ⊢ ( ( - ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ℝ ) | 
						
							| 20 | 16 7 19 | sylancl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ℝ ) | 
						
							| 21 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  - ( 𝐹 ‘ 𝑦 )  ∈  ℝ )  →  0  ≤  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 22 | 7 16 21 | sylancr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  0  ≤  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 23 |  | elrege0 | ⊢ ( if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ( 0 [,) +∞ )  ↔  ( if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 24 | 20 22 23 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 25 | 24 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 26 | 18 25 | mbfi1fseq | ⊢ ( 𝜑  →  ∃ ℎ ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ℎ ‘ 𝑛 )  ∧  ( ℎ ‘ 𝑛 )  ∘r   ≤  ( ℎ ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) | 
						
							| 27 |  | exdistrv | ⊢ ( ∃ 𝑓 ∃ ℎ ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ∧  ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ℎ ‘ 𝑛 )  ∧  ( ℎ ‘ 𝑛 )  ∘r   ≤  ( ℎ ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) )  ↔  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ∧  ∃ ℎ ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ℎ ‘ 𝑛 )  ∧  ( ℎ ‘ 𝑛 )  ∘r   ≤  ( ℎ ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 28 |  | 3simpb | ⊢ ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  →  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) | 
						
							| 29 |  | 3simpb | ⊢ ( ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ℎ ‘ 𝑛 )  ∧  ( ℎ ‘ 𝑛 )  ∘r   ≤  ( ℎ ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  →  ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) | 
						
							| 30 | 28 29 | anim12i | ⊢ ( ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ∧  ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ℎ ‘ 𝑛 )  ∧  ( ℎ ‘ 𝑛 )  ∘r   ≤  ( ℎ ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) )  →  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ∧  ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 31 |  | an4 | ⊢ ( ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ∧  ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 )  ∧  ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 32 | 30 31 | sylib | ⊢ ( ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ∧  ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ℎ ‘ 𝑛 )  ∧  ( ℎ ‘ 𝑛 )  ∘r   ≤  ( ℎ ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) )  →  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 )  ∧  ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 33 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  ℝ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ↔  ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) ) | 
						
							| 34 |  | i1fsub | ⊢ ( ( 𝑥  ∈  dom  ∫1  ∧  𝑦  ∈  dom  ∫1 )  →  ( 𝑥  ∘f   −  𝑦 )  ∈  dom  ∫1 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  ( 𝑥  ∈  dom  ∫1  ∧  𝑦  ∈  dom  ∫1 ) )  →  ( 𝑥  ∘f   −  𝑦 )  ∈  dom  ∫1 ) | 
						
							| 36 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  𝑓 : ℕ ⟶ dom  ∫1 ) | 
						
							| 37 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  ℎ : ℕ ⟶ dom  ∫1 ) | 
						
							| 38 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  ℕ  ∈  V ) | 
						
							| 40 |  | inidm | ⊢ ( ℕ  ∩  ℕ )  =  ℕ | 
						
							| 41 | 35 36 37 39 39 40 | off | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  ( 𝑓  ∘f   ∘f   −  ℎ ) : ℕ ⟶ dom  ∫1 ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 43 | 42 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( 0  ≤  ( 𝐹 ‘ 𝑦 )  ↔  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 44 | 43 42 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  =  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 45 |  | eqid | ⊢ ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 46 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 47 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 48 | 46 47 | ifex | ⊢ if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 49 | 44 45 48 | fvmpt | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  =  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 50 | 49 | breq2d | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 51 | 42 | negeqd | ⊢ ( 𝑦  =  𝑥  →  - ( 𝐹 ‘ 𝑦 )  =  - ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 52 | 51 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( 0  ≤  - ( 𝐹 ‘ 𝑦 )  ↔  0  ≤  - ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 53 | 52 51 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 )  =  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 54 |  | eqid | ⊢ ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 55 |  | negex | ⊢ - ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 56 | 55 47 | ifex | ⊢ if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 57 | 53 54 56 | fvmpt | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  =  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 58 | 57 | breq2d | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 59 | 50 58 | anbi12d | ⊢ ( 𝑥  ∈  ℝ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ↔  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ↔  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 61 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 62 |  | 1zzd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  →  1  ∈  ℤ ) | 
						
							| 63 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 64 | 38 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  V | 
						
							| 65 | 64 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  V ) | 
						
							| 66 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 67 | 36 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑓 ‘ 𝑛 )  ∈  dom  ∫1 ) | 
						
							| 68 |  | i1ff | ⊢ ( ( 𝑓 ‘ 𝑛 )  ∈  dom  ∫1  →  ( 𝑓 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 69 | 67 68 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑓 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 70 | 69 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 71 | 70 | an32s | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 72 | 71 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 73 | 72 | fmpttd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) | 
						
							| 75 | 74 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 76 | 37 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑛  ∈  ℕ )  →  ( ℎ ‘ 𝑛 )  ∈  dom  ∫1 ) | 
						
							| 77 |  | i1ff | ⊢ ( ( ℎ ‘ 𝑛 )  ∈  dom  ∫1  →  ( ℎ ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑛  ∈  ℕ )  →  ( ℎ ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 79 | 78 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 80 | 79 | an32s | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 81 | 80 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 82 | 81 | fmpttd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) | 
						
							| 84 | 83 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 85 | 36 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  𝑓  Fn  ℕ ) | 
						
							| 86 | 37 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  ℎ  Fn  ℕ ) | 
						
							| 87 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 88 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ℎ ‘ 𝑘 )  =  ( ℎ ‘ 𝑘 ) ) | 
						
							| 89 | 85 86 39 39 40 87 88 | ofval | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 )  =  ( ( 𝑓 ‘ 𝑘 )  ∘f   −  ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 90 | 89 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 ) ‘ 𝑥 )  =  ( ( ( 𝑓 ‘ 𝑘 )  ∘f   −  ( ℎ ‘ 𝑘 ) ) ‘ 𝑥 ) ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 ) ‘ 𝑥 )  =  ( ( ( 𝑓 ‘ 𝑘 )  ∘f   −  ( ℎ ‘ 𝑘 ) ) ‘ 𝑥 ) ) | 
						
							| 92 | 36 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑓 ‘ 𝑘 )  ∈  dom  ∫1 ) | 
						
							| 93 |  | i1ff | ⊢ ( ( 𝑓 ‘ 𝑘 )  ∈  dom  ∫1  →  ( 𝑓 ‘ 𝑘 ) : ℝ ⟶ ℝ ) | 
						
							| 94 |  | ffn | ⊢ ( ( 𝑓 ‘ 𝑘 ) : ℝ ⟶ ℝ  →  ( 𝑓 ‘ 𝑘 )  Fn  ℝ ) | 
						
							| 95 | 92 93 94 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑓 ‘ 𝑘 )  Fn  ℝ ) | 
						
							| 96 | 37 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ℎ ‘ 𝑘 )  ∈  dom  ∫1 ) | 
						
							| 97 |  | i1ff | ⊢ ( ( ℎ ‘ 𝑘 )  ∈  dom  ∫1  →  ( ℎ ‘ 𝑘 ) : ℝ ⟶ ℝ ) | 
						
							| 98 |  | ffn | ⊢ ( ( ℎ ‘ 𝑘 ) : ℝ ⟶ ℝ  →  ( ℎ ‘ 𝑘 )  Fn  ℝ ) | 
						
							| 99 | 96 97 98 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ℎ ‘ 𝑘 )  Fn  ℝ ) | 
						
							| 100 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 101 | 100 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 102 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 103 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 )  =  ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 104 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 )  =  ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 105 | 95 99 101 101 102 103 104 | ofval | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝑓 ‘ 𝑘 )  ∘f   −  ( ℎ ‘ 𝑘 ) ) ‘ 𝑥 )  =  ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 )  −  ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 106 | 91 105 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 ) ‘ 𝑥 )  =  ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 )  −  ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 107 | 106 | an32s | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 ) ‘ 𝑥 )  =  ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 )  −  ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 108 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 )  =  ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 ) ) | 
						
							| 109 | 108 | fveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 110 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 111 |  | fvex | ⊢ ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 ) ‘ 𝑥 )  ∈  V | 
						
							| 112 | 109 110 111 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  =  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  =  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 114 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 115 | 114 | fveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 116 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 117 |  | fvex | ⊢ ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 )  ∈  V | 
						
							| 118 | 115 116 117 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  =  ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 119 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ℎ ‘ 𝑛 )  =  ( ℎ ‘ 𝑘 ) ) | 
						
							| 120 | 119 | fveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 121 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 122 |  | fvex | ⊢ ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 )  ∈  V | 
						
							| 123 | 120 121 122 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  =  ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 124 | 118 123 | oveq12d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) )  =  ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 )  −  ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 125 | 124 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) )  =  ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑥 )  −  ( ( ℎ ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 126 | 107 113 125 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) ) | 
						
							| 127 | 126 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) ) | 
						
							| 128 | 61 62 63 65 66 75 84 127 | climsub | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  −  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 129 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 130 | 129 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 131 |  | max0sub | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  →  ( if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  −  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 132 | 130 131 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  →  ( if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  −  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  →  ( if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  −  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 134 | 128 133 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 135 | 134 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  if ( 0  ≤  - ( 𝐹 ‘ 𝑥 ) ,  - ( 𝐹 ‘ 𝑥 ) ,  0 ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 136 | 60 135 | sylbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 137 | 136 | ralimdva | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  ( ∀ 𝑥  ∈  ℝ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 138 |  | ovex | ⊢ ( 𝑓  ∘f   ∘f   −  ℎ )  ∈  V | 
						
							| 139 |  | feq1 | ⊢ ( 𝑔  =  ( 𝑓  ∘f   ∘f   −  ℎ )  →  ( 𝑔 : ℕ ⟶ dom  ∫1  ↔  ( 𝑓  ∘f   ∘f   −  ℎ ) : ℕ ⟶ dom  ∫1 ) ) | 
						
							| 140 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑓  ∘f   ∘f   −  ℎ )  →  ( 𝑔 ‘ 𝑛 )  =  ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ) | 
						
							| 141 | 140 | fveq1d | ⊢ ( 𝑔  =  ( 𝑓  ∘f   ∘f   −  ℎ )  →  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 142 | 141 | mpteq2dv | ⊢ ( 𝑔  =  ( 𝑓  ∘f   ∘f   −  ℎ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 143 | 142 | breq1d | ⊢ ( 𝑔  =  ( 𝑓  ∘f   ∘f   −  ℎ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 144 | 143 | ralbidv | ⊢ ( 𝑔  =  ( 𝑓  ∘f   ∘f   −  ℎ )  →  ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 145 | 139 144 | anbi12d | ⊢ ( 𝑔  =  ( 𝑓  ∘f   ∘f   −  ℎ )  →  ( ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝑓  ∘f   ∘f   −  ℎ ) : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 146 | 138 145 | spcev | ⊢ ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑓  ∘f   ∘f   −  ℎ ) ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 147 | 41 137 146 | syl6an | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  ( ∀ 𝑥  ∈  ℝ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 148 | 33 147 | biimtrrid | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 ) )  →  ( ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 149 | 148 | expimpd | ⊢ ( 𝜑  →  ( ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ℎ : ℕ ⟶ dom  ∫1 )  ∧  ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 150 | 32 149 | syl5 | ⊢ ( 𝜑  →  ( ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ∧  ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ℎ ‘ 𝑛 )  ∧  ( ℎ ‘ 𝑛 )  ∘r   ≤  ( ℎ ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 151 | 150 | exlimdvv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ∃ ℎ ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ∧  ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ℎ ‘ 𝑛 )  ∧  ( ℎ ‘ 𝑛 )  ∘r   ≤  ( ℎ ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 152 | 27 151 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) )  ∧  ∃ ℎ ( ℎ : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ℎ ‘ 𝑛 )  ∧  ( ℎ ‘ 𝑛 )  ∘r   ≤  ( ℎ ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( ℎ ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝑦 ) ,  - ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ‘ 𝑥 ) ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 153 | 15 26 152 | mp2and | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) |