| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfi1fseq.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfi1fseq.2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 2 ↑ 𝑗 )  =  ( 2 ↑ 𝑘 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) )  =  ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑗  =  𝑘  →  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  =  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 6 | 5 3 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) )  =  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑘 ) ) )  /  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 8 | 7 | fvoveq1d | ⊢ ( 𝑧  =  𝑦  →  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑘 ) ) )  =  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑧  =  𝑦  →  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑘 ) ) )  /  ( 2 ↑ 𝑘 ) )  =  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 )  ·  ( 2 ↑ 𝑘 ) ) )  /  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 10 | 6 9 | cbvmpov | ⊢ ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) )  =  ( 𝑘  ∈  ℕ ,  𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 )  ·  ( 2 ↑ 𝑘 ) ) )  /  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 11 |  | eleq1w | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  ( - 𝑚 [,] 𝑚 )  ↔  𝑥  ∈  ( - 𝑚 [,] 𝑚 ) ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 )  =  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ) | 
						
							| 13 | 12 | breq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 )  ≤  𝑚  ↔  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑚 ) ) | 
						
							| 14 | 13 12 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ,  𝑚 )  =  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑚 ) ) | 
						
							| 15 | 11 14 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ,  𝑚 ) ,  0 )  =  if ( 𝑥  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑚 ) ,  0 ) ) | 
						
							| 16 | 15 | cbvmptv | ⊢ ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ,  𝑚 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑚 ) ,  0 ) ) | 
						
							| 17 |  | negeq | ⊢ ( 𝑚  =  𝑘  →  - 𝑚  =  - 𝑘 ) | 
						
							| 18 |  | id | ⊢ ( 𝑚  =  𝑘  →  𝑚  =  𝑘 ) | 
						
							| 19 | 17 18 | oveq12d | ⊢ ( 𝑚  =  𝑘  →  ( - 𝑚 [,] 𝑚 )  =  ( - 𝑘 [,] 𝑘 ) ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( 𝑚  =  𝑘  →  ( 𝑥  ∈  ( - 𝑚 [,] 𝑚 )  ↔  𝑥  ∈  ( - 𝑘 [,] 𝑘 ) ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑚  =  𝑘  →  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  =  ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ) | 
						
							| 22 | 21 18 | breq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑚  ↔  ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑘 ) ) | 
						
							| 23 | 22 21 18 | ifbieq12d | ⊢ ( 𝑚  =  𝑘  →  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑚 )  =  if ( ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑘 ,  ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑘 ) ) | 
						
							| 24 | 20 23 | ifbieq1d | ⊢ ( 𝑚  =  𝑘  →  if ( 𝑥  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑚 ) ,  0 )  =  if ( 𝑥  ∈  ( - 𝑘 [,] 𝑘 ) ,  if ( ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑘 ,  ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑘 ) ,  0 ) ) | 
						
							| 25 | 24 | mpteq2dv | ⊢ ( 𝑚  =  𝑘  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑚 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑘 [,] 𝑘 ) ,  if ( ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑘 ,  ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑘 ) ,  0 ) ) ) | 
						
							| 26 | 16 25 | eqtrid | ⊢ ( 𝑚  =  𝑘  →  ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ,  𝑚 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑘 [,] 𝑘 ) ,  if ( ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑘 ,  ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑘 ) ,  0 ) ) ) | 
						
							| 27 | 26 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 )  ≤  𝑚 ,  ( 𝑚 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ,  𝑚 ) ,  0 ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑘 [,] 𝑘 ) ,  if ( ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 )  ≤  𝑘 ,  ( 𝑘 ( 𝑗  ∈  ℕ ,  𝑧  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ,  𝑘 ) ,  0 ) ) ) | 
						
							| 28 | 1 2 10 27 | mbfi1fseqlem6 | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) |