Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfi1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
mbfi1fseq.3 |
⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
4 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
5 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
6 |
2 4 5
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
7 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
8
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
10 |
|
2nn |
⊢ 2 ∈ ℕ |
11 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
12 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
13 |
10 11 12
|
sylancr |
⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
14 |
13
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
15 |
14
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
16 |
9 15
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
17 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
19 |
18 14
|
nndivred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
20 |
14
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ0 ) |
21 |
20
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 ≤ ( 2 ↑ 𝑚 ) ) |
22 |
|
mulge0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 2 ↑ 𝑚 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝑚 ) ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) |
23 |
8 15 21 22
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) |
24 |
|
flge0nn0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℕ0 ) |
25 |
16 23 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℕ0 ) |
26 |
25
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ) |
27 |
14
|
nngt0d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 < ( 2 ↑ 𝑚 ) ) |
28 |
|
divge0 |
⊢ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ∧ 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ) ∧ ( ( 2 ↑ 𝑚 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑚 ) ) ) → 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
29 |
18 26 15 27 28
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
30 |
|
elrege0 |
⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ∧ 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) ) |
31 |
19 29 30
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ) |
32 |
31
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ) |
33 |
3
|
fmpo |
⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ( 0 [,) +∞ ) ) |
34 |
32 33
|
sylib |
⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ( 0 [,) +∞ ) ) |