Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfi1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
mbfi1fseq.3 |
⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
4 |
|
mbfi1fseq.4 |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) |
5 |
|
negeq |
⊢ ( 𝑚 = 𝐴 → - 𝑚 = - 𝐴 ) |
6 |
|
id |
⊢ ( 𝑚 = 𝐴 → 𝑚 = 𝐴 ) |
7 |
5 6
|
oveq12d |
⊢ ( 𝑚 = 𝐴 → ( - 𝑚 [,] 𝑚 ) = ( - 𝐴 [,] 𝐴 ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝑚 = 𝐴 → ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) ↔ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑚 = 𝐴 → ( 𝑚 𝐽 𝑥 ) = ( 𝐴 𝐽 𝑥 ) ) |
10 |
9 6
|
breq12d |
⊢ ( 𝑚 = 𝐴 → ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 ↔ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) ) |
11 |
10 9 6
|
ifbieq12d |
⊢ ( 𝑚 = 𝐴 → if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) = if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) |
12 |
8 11
|
ifbieq1d |
⊢ ( 𝑚 = 𝐴 → if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
13 |
12
|
mpteq2dv |
⊢ ( 𝑚 = 𝐴 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
14 |
|
reex |
⊢ ℝ ∈ V |
15 |
14
|
mptex |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ∈ V |
16 |
13 4 15
|
fvmpt |
⊢ ( 𝐴 ∈ ℕ → ( 𝐺 ‘ 𝐴 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |