Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfi1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
mbfi1fseq.3 |
⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
4 |
|
mbfi1fseq.4 |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) |
5 |
1 2 3 4
|
mbfi1fseqlem2 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐺 ‘ 𝐴 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
7 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
8 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
9 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
10 |
2 8 9
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
11 |
7 10
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
12 |
|
2nn |
⊢ 2 ∈ ℕ |
13 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
14 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
15 |
12 13 14
|
sylancr |
⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
16 |
15
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
17 |
16
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
18 |
11 17
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
19 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
21 |
20 16
|
nndivred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
22 |
21
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
23 |
3
|
fmpo |
⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
24 |
22 23
|
sylib |
⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
25 |
|
fovrn |
⊢ ( ( 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
26 |
24 25
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
27 |
26
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
28 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
29 |
28
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
30 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
31 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐴 ∈ ℕ0 ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
32 |
12 30 31
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
33 |
32
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
34 |
|
nnre |
⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( 2 ↑ 𝐴 ) ∈ ℝ ) |
35 |
|
nngt0 |
⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → 0 < ( 2 ↑ 𝐴 ) ) |
36 |
34 35
|
jca |
⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐴 ) ) ) |
37 |
33 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐴 ) ) ) |
38 |
|
lemul1 |
⊢ ( ( ( 𝐴 𝐽 𝑥 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐴 ) ) ) → ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ↔ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
39 |
27 29 37 38
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ↔ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
40 |
39
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) |
41 |
|
simpr |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
42 |
41
|
fveq2d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
43 |
|
simpl |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝑚 = 𝐴 ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝐴 ) ) |
45 |
42 44
|
oveq12d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
46 |
45
|
fveq2d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
47 |
46 44
|
oveq12d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
48 |
|
ovex |
⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ V |
49 |
47 3 48
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
50 |
49
|
ad4ant23 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
51 |
50
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) ) |
52 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
53 |
52
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
54 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
55 |
53 54
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
56 |
55
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
57 |
33
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℝ ) |
58 |
56 57
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ) |
59 |
33
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℕ0 ) |
60 |
59
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 2 ↑ 𝐴 ) ) |
61 |
|
mulge0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐴 ) ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
62 |
55 57 60 61
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
63 |
|
flge0nn0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) |
64 |
58 62 63
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) |
65 |
64
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) |
66 |
65
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℂ ) |
67 |
33
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
68 |
67
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 2 ↑ 𝐴 ) ∈ ℂ ) |
69 |
67
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 2 ↑ 𝐴 ) ≠ 0 ) |
70 |
66 68 69
|
divcan1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
71 |
51 70
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
72 |
71 65
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℕ0 ) |
73 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
74 |
72 73
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
75 |
|
nnmulcl |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 2 ↑ 𝐴 ) ∈ ℕ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ ) |
76 |
32 75
|
mpdan |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ ) |
77 |
76
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ ) |
78 |
77
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ ) |
79 |
78
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℤ ) |
80 |
|
elfz5 |
⊢ ( ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℤ ) → ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↔ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
81 |
74 79 80
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↔ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
82 |
40 81
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
83 |
|
oveq1 |
⊢ ( 𝑚 = ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) → ( 𝑚 / ( 2 ↑ 𝐴 ) ) = ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
84 |
|
eqid |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) = ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) |
85 |
|
ovex |
⊢ ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ∈ V |
86 |
83 84 85
|
fvmpt |
⊢ ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) = ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
87 |
82 86
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) = ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
88 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
89 |
88
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 𝐽 𝑥 ) ∈ ℂ ) |
90 |
89 68 69
|
divcan4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) = ( 𝐴 𝐽 𝑥 ) ) |
91 |
87 90
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) = ( 𝐴 𝐽 𝑥 ) ) |
92 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → 𝑚 ∈ ℕ0 ) |
93 |
92
|
nn0red |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → 𝑚 ∈ ℝ ) |
94 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
95 |
|
nndivre |
⊢ ( ( 𝑚 ∈ ℝ ∧ ( 2 ↑ 𝐴 ) ∈ ℕ ) → ( 𝑚 / ( 2 ↑ 𝐴 ) ) ∈ ℝ ) |
96 |
93 94 95
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) → ( 𝑚 / ( 2 ↑ 𝐴 ) ) ∈ ℝ ) |
97 |
96
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) : ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ⟶ ℝ ) |
98 |
97
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
99 |
98
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
100 |
99
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
101 |
|
fnfvelrn |
⊢ ( ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∧ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
102 |
100 82 101
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
103 |
91 102
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 𝐽 𝑥 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
104 |
77
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ0 ) |
105 |
104 73
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
106 |
|
eluzfz2 |
⊢ ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
107 |
105 106
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
108 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝐴 · ( 2 ↑ 𝐴 ) ) → ( 𝑚 / ( 2 ↑ 𝐴 ) ) = ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
109 |
|
ovex |
⊢ ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ∈ V |
110 |
108 84 109
|
fvmpt |
⊢ ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
111 |
107 110
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
112 |
29
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
113 |
33
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℂ ) |
114 |
33
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ≠ 0 ) |
115 |
112 113 114
|
divcan4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) = 𝐴 ) |
116 |
111 115
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) = 𝐴 ) |
117 |
|
fnfvelrn |
⊢ ( ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∧ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
118 |
99 107 117
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
119 |
116 118
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
120 |
119
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → 𝐴 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
121 |
103 120
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
122 |
|
eluzfz1 |
⊢ ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
123 |
105 122
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
124 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 / ( 2 ↑ 𝐴 ) ) = ( 0 / ( 2 ↑ 𝐴 ) ) ) |
125 |
|
ovex |
⊢ ( 0 / ( 2 ↑ 𝐴 ) ) ∈ V |
126 |
124 84 125
|
fvmpt |
⊢ ( 0 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) = ( 0 / ( 2 ↑ 𝐴 ) ) ) |
127 |
123 126
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) = ( 0 / ( 2 ↑ 𝐴 ) ) ) |
128 |
|
nncn |
⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( 2 ↑ 𝐴 ) ∈ ℂ ) |
129 |
|
nnne0 |
⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( 2 ↑ 𝐴 ) ≠ 0 ) |
130 |
128 129
|
div0d |
⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( 0 / ( 2 ↑ 𝐴 ) ) = 0 ) |
131 |
33 130
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 0 / ( 2 ↑ 𝐴 ) ) = 0 ) |
132 |
127 131
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) = 0 ) |
133 |
|
fnfvelrn |
⊢ ( ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∧ 0 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
134 |
99 123 133
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
135 |
132 134
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
136 |
121 135
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
137 |
6 136
|
fmpt3d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) : ℝ ⟶ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |