| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfi1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 2 |
|
mbfi1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 3 |
|
mbfi1fseq.3 |
⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
| 4 |
|
mbfi1fseq.4 |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) |
| 5 |
|
reex |
⊢ ℝ ∈ V |
| 6 |
5
|
mptex |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ∈ V |
| 7 |
6 4
|
fnmpti |
⊢ 𝐺 Fn ℕ |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐺 Fn ℕ ) |
| 9 |
1 2 3 4
|
mbfi1fseqlem3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) : ℝ ⟶ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 10 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 11 |
10
|
nn0red |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℝ ) |
| 12 |
|
2nn |
⊢ 2 ∈ ℕ |
| 13 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 14 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 15 |
12 13 14
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 17 |
|
nndivre |
⊢ ( ( 𝑚 ∈ ℝ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝑚 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 18 |
11 16 17
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑚 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 19 |
18
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ⟶ ℝ ) |
| 20 |
19
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ⊆ ℝ ) |
| 21 |
9 20
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 22 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ∈ Fin ) |
| 23 |
19
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) Fn ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) |
| 24 |
|
dffn4 |
⊢ ( ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) Fn ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 25 |
23 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 26 |
|
fofi |
⊢ ( ( ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ∈ Fin ∧ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ∈ Fin ) |
| 27 |
22 25 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ∈ Fin ) |
| 28 |
9
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝐺 ‘ 𝑛 ) ⊆ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 29 |
27 28
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝐺 ‘ 𝑛 ) ∈ Fin ) |
| 30 |
1 2 3 4
|
mbfi1fseqlem2 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐺 ‘ 𝑛 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ) |
| 31 |
30
|
fveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) ) |
| 32 |
31
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) ) |
| 33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 34 |
|
ovex |
⊢ ( 𝑛 𝐽 𝑥 ) ∈ V |
| 35 |
|
vex |
⊢ 𝑛 ∈ V |
| 36 |
34 35
|
ifex |
⊢ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ V |
| 37 |
|
c0ex |
⊢ 0 ∈ V |
| 38 |
36 37
|
ifex |
⊢ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ V |
| 39 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 40 |
39
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 41 |
33 38 40
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 42 |
32 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 43 |
42
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 44 |
43
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) |
| 45 |
|
eldifsni |
⊢ ( 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) → 𝑘 ≠ 0 ) |
| 46 |
45
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ≠ 0 ) |
| 47 |
|
neeq1 |
⊢ ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 ↔ 𝑘 ≠ 0 ) ) |
| 48 |
46 47
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 ) ) |
| 49 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 0 ) |
| 50 |
49
|
necon1ai |
⊢ ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) |
| 51 |
48 50
|
syl6 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 52 |
51
|
pm4.71rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) ) |
| 53 |
|
iftrue |
⊢ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) |
| 54 |
53
|
eqeq1d |
⊢ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) ) |
| 55 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℕ ) |
| 56 |
55
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℝ ) |
| 57 |
56
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑛 ∈ ℝ ) |
| 58 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 59 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 60 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 61 |
2 59 60
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 62 |
58 61
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 63 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
| 64 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 65 |
12 63 64
|
sylancr |
⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 66 |
65
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 67 |
66
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
| 68 |
62 67
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 69 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 70 |
68 69
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 71 |
70 66
|
nndivred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 72 |
71
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 73 |
3
|
fmpo |
⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
| 74 |
72 73
|
sylib |
⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
| 75 |
|
fovcdm |
⊢ ( ( 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
| 76 |
74 75
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
| 77 |
76
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
| 78 |
77
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
| 79 |
78
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
| 80 |
|
lemin |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑛 𝐽 𝑥 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛 ≤ 𝑛 ) ) ) |
| 81 |
57 79 57 80
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛 ≤ 𝑛 ) ) ) |
| 82 |
79 57
|
ifcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ) |
| 83 |
82 57
|
letri3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ↔ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) ) |
| 84 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑘 = 𝑛 ) |
| 85 |
84
|
eqeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ) ) |
| 86 |
|
min2 |
⊢ ( ( ( 𝑛 𝐽 𝑥 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ) |
| 87 |
79 57 86
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ) |
| 88 |
87
|
biantrurd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) ) |
| 89 |
83 85 88
|
3bitr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) |
| 90 |
57
|
leidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑛 ≤ 𝑛 ) |
| 91 |
90
|
biantrud |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛 ≤ 𝑛 ) ) ) |
| 92 |
81 89 91
|
3bitr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) ) |
| 93 |
|
breq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 94 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 95 |
94
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 96 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 97 |
95 96
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 98 |
97
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 99 |
98
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 100 |
55 15
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 101 |
100
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 102 |
99 101
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 103 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 104 |
102 103
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 105 |
100
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 2 ↑ 𝑛 ) ) |
| 106 |
|
lemuldiv |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 107 |
56 104 101 105 106
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 108 |
|
lemul1 |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 109 |
56 99 101 105 108
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 110 |
|
nnmulcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℕ ) |
| 111 |
55 15 110
|
syl2anc2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℕ ) |
| 112 |
111
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 113 |
|
flge |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
| 114 |
102 112 113
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
| 115 |
109 114
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
| 116 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 117 |
|
simpr |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
| 118 |
117
|
fveq2d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 119 |
|
simpl |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → 𝑚 = 𝑛 ) |
| 120 |
119
|
oveq2d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) |
| 121 |
118 120
|
oveq12d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) |
| 122 |
121
|
fveq2d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 123 |
122 120
|
oveq12d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
| 124 |
|
ovex |
⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∈ V |
| 125 |
123 3 124
|
ovmpoa |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
| 126 |
55 116 125
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
| 127 |
126
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 128 |
107 115 127
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) ) |
| 129 |
93 128
|
sylan9bbr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) ) |
| 130 |
116
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑥 ∈ ℝ ) |
| 131 |
|
iftrue |
⊢ ( 𝑘 = 𝑛 → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ℝ ) |
| 132 |
131
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ℝ ) |
| 133 |
130 132
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
| 134 |
133
|
biantrurd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 135 |
92 129 134
|
3bitr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 136 |
28
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ⊆ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 137 |
136
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 138 |
|
eqid |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) |
| 139 |
138
|
rnmpt |
⊢ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) = { 𝑘 ∣ ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) } |
| 140 |
139
|
eqabri |
⊢ ( 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) |
| 141 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℤ ) |
| 142 |
141
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → 𝑚 ∈ ℤ ) |
| 143 |
142
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → 𝑚 ∈ ℂ ) |
| 144 |
15
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 145 |
144
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
| 146 |
144
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
| 147 |
143 145 146
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) = 𝑚 ) |
| 148 |
147 142
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 149 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) = ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ) |
| 150 |
149
|
eleq1d |
⊢ ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ↔ ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
| 151 |
148 150
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
| 152 |
151
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
| 153 |
140 152
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
| 154 |
153
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 155 |
137 154
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 156 |
155
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 157 |
|
flbi |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
| 158 |
102 156 157
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
| 159 |
158
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
| 160 |
|
neeq1 |
⊢ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 ↔ 𝑘 ≠ 𝑛 ) ) |
| 161 |
160
|
biimparc |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 ) |
| 162 |
|
iffalse |
⊢ ( ¬ ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ) |
| 163 |
162
|
necon1ai |
⊢ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ) |
| 164 |
161 163
|
syl |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ) |
| 165 |
164
|
iftrued |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = ( 𝑛 𝐽 𝑥 ) ) |
| 166 |
|
simpr |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) |
| 167 |
165 166
|
eqtr3d |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) = 𝑘 ) |
| 168 |
167 164
|
eqbrtrrd |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → 𝑘 ≤ 𝑛 ) |
| 169 |
168 167
|
jca |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) |
| 170 |
169
|
ex |
⊢ ( 𝑘 ≠ 𝑛 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 → ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
| 171 |
|
breq1 |
⊢ ( ( 𝑛 𝐽 𝑥 ) = 𝑘 → ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ↔ 𝑘 ≤ 𝑛 ) ) |
| 172 |
171
|
biimparc |
⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ) |
| 173 |
172
|
iftrued |
⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = ( 𝑛 𝐽 𝑥 ) ) |
| 174 |
|
simpr |
⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) = 𝑘 ) |
| 175 |
173 174
|
eqtrd |
⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) |
| 176 |
170 175
|
impbid1 |
⊢ ( 𝑘 ≠ 𝑛 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
| 177 |
176
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
| 178 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) → 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) ) |
| 179 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
| 180 |
179
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℝ ) |
| 181 |
77 180 86
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ) |
| 182 |
13
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℕ0 ) |
| 183 |
182
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ 𝑛 ) |
| 184 |
|
breq1 |
⊢ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) ) |
| 185 |
|
breq1 |
⊢ ( 0 = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) → ( 0 ≤ 𝑛 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) ) |
| 186 |
184 185
|
ifboth |
⊢ ( ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 0 ≤ 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) |
| 187 |
181 183 186
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) |
| 188 |
42 187
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) |
| 189 |
188
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) |
| 190 |
9
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) Fn ℝ ) |
| 191 |
|
breq1 |
⊢ ( 𝑘 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) → ( 𝑘 ≤ 𝑛 ↔ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) ) |
| 192 |
191
|
ralrn |
⊢ ( ( 𝐺 ‘ 𝑛 ) Fn ℝ → ( ∀ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) 𝑘 ≤ 𝑛 ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) ) |
| 193 |
190 192
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) 𝑘 ≤ 𝑛 ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) ) |
| 194 |
189 193
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) 𝑘 ≤ 𝑛 ) |
| 195 |
194
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) ) → 𝑘 ≤ 𝑛 ) |
| 196 |
178 195
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑘 ≤ 𝑛 ) |
| 197 |
196
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → 𝑘 ≤ 𝑛 ) |
| 198 |
197
|
biantrurd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
| 199 |
126
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) = 𝑘 ) ) |
| 200 |
104
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 201 |
28 20
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝐺 ‘ 𝑛 ) ⊆ ℝ ) |
| 202 |
201
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ⊆ ℝ ) |
| 203 |
202
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑘 ∈ ℝ ) |
| 204 |
203
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℝ ) |
| 205 |
204
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℂ ) |
| 206 |
100
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
| 207 |
100
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
| 208 |
200 205 206 207
|
divmul3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
| 209 |
199 208
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
| 210 |
209
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
| 211 |
177 198 210
|
3bitr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
| 212 |
|
ifnefalse |
⊢ ( 𝑘 ≠ 𝑛 → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 213 |
212
|
eleq2d |
⊢ ( 𝑘 ≠ 𝑛 → ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ↔ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
| 214 |
100
|
nnrecred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 215 |
204 214
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 216 |
215
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* ) |
| 217 |
|
elioomnf |
⊢ ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 218 |
216 217
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 219 |
94
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 220 |
219
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 Fn ℝ ) |
| 221 |
|
elpreima |
⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
| 222 |
220 221
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
| 223 |
116 222
|
mpbirand |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 224 |
99
|
biantrurd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 225 |
218 223 224
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 226 |
|
ltmul1 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 227 |
99 215 101 105 226
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 228 |
214
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℂ ) |
| 229 |
206 207
|
recid2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 1 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) = 1 ) |
| 230 |
229
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + ( ( 1 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ) = ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) |
| 231 |
205 206 228 230
|
joinlmuladdmuld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) = ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) |
| 232 |
231
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) |
| 233 |
225 227 232
|
3bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) |
| 234 |
213 233
|
sylan9bbr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) |
| 235 |
|
lemul1 |
⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 236 |
204 99 101 105 235
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 237 |
236
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 238 |
234 237
|
anbi12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ∧ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
| 239 |
238
|
biancomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
| 240 |
159 211 239
|
3bitr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 241 |
135 240
|
pm2.61dane |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 242 |
|
eldif |
⊢ ( 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) |
| 243 |
204
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℝ* ) |
| 244 |
|
elioomnf |
⊢ ( 𝑘 ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) ) |
| 245 |
243 244
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) ) |
| 246 |
|
elpreima |
⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) ) |
| 247 |
220 246
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) ) |
| 248 |
116 247
|
mpbirand |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) |
| 249 |
99
|
biantrurd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑘 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) ) |
| 250 |
245 248 249
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) |
| 251 |
250
|
notbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) |
| 252 |
204 99
|
lenltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) |
| 253 |
251 252
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 254 |
253
|
anbi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 255 |
242 254
|
bitrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 256 |
241 255
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
| 257 |
54 256
|
sylan9bbr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
| 258 |
257
|
pm5.32da |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) |
| 259 |
44 52 258
|
3bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) |
| 260 |
259
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) ) |
| 261 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 262 |
261
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑛 ) Fn ℝ ) |
| 263 |
|
fniniseg |
⊢ ( ( 𝐺 ‘ 𝑛 ) Fn ℝ → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) ) |
| 264 |
262 263
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) ) |
| 265 |
|
elin |
⊢ ( 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
| 266 |
179
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑛 ∈ ℝ ) |
| 267 |
266
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → - 𝑛 ∈ ℝ ) |
| 268 |
|
iccmbl |
⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) |
| 269 |
267 266 268
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) |
| 270 |
|
mblss |
⊢ ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
| 271 |
269 270
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
| 272 |
271
|
sseld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → 𝑥 ∈ ℝ ) ) |
| 273 |
272
|
adantrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) → 𝑥 ∈ ℝ ) ) |
| 274 |
273
|
pm4.71rd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) ) |
| 275 |
265 274
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) ) |
| 276 |
260 264 275
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) |
| 277 |
276
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) = ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
| 278 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 279 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 280 |
2 58 279
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 281 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) |
| 282 |
1 280 281
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) |
| 283 |
|
ifcl |
⊢ ( ( ℝ ∈ dom vol ∧ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ) |
| 284 |
278 282 283
|
sylancr |
⊢ ( 𝜑 → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ) |
| 285 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) |
| 286 |
1 280 285
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) |
| 287 |
|
difmbl |
⊢ ( ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) → ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) |
| 288 |
284 286 287
|
syl2anc |
⊢ ( 𝜑 → ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) |
| 289 |
288
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) |
| 290 |
|
inmbl |
⊢ ( ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol ∧ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) → ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ∈ dom vol ) |
| 291 |
269 289 290
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ∈ dom vol ) |
| 292 |
277 291
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ∈ dom vol ) |
| 293 |
|
mblvol |
⊢ ( ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ∈ dom vol → ( vol ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ) |
| 294 |
292 293
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ) |
| 295 |
190
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑛 ) Fn ℝ ) |
| 296 |
295 263
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) ) |
| 297 |
77 180
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ) |
| 298 |
|
0re |
⊢ 0 ∈ ℝ |
| 299 |
|
ifcl |
⊢ ( ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) |
| 300 |
297 298 299
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) |
| 301 |
39
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 302 |
33 300 301
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 303 |
32 302
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 304 |
303
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 305 |
304
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) |
| 306 |
305 51
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 307 |
306
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 308 |
296 307
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 309 |
308
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ⊆ ( - 𝑛 [,] 𝑛 ) ) |
| 310 |
|
iccssre |
⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
| 311 |
267 266 310
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
| 312 |
|
mblvol |
⊢ ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) = ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ) |
| 313 |
269 312
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) = ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ) |
| 314 |
|
iccvolcl |
⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) |
| 315 |
267 266 314
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) |
| 316 |
313 315
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) |
| 317 |
|
ovolsscl |
⊢ ( ( ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ⊆ ( - 𝑛 [,] 𝑛 ) ∧ ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) → ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ∈ ℝ ) |
| 318 |
309 311 316 317
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ∈ ℝ ) |
| 319 |
294 318
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ∈ ℝ ) |
| 320 |
21 29 292 319
|
i1fd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 321 |
320
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 322 |
|
ffnfv |
⊢ ( 𝐺 : ℕ ⟶ dom ∫1 ↔ ( 𝐺 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ dom ∫1 ) ) |
| 323 |
8 321 322
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ dom ∫1 ) |