Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfi1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
mbfi1fseq.3 |
⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
4 |
|
mbfi1fseq.4 |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) |
5 |
|
reex |
⊢ ℝ ∈ V |
6 |
5
|
mptex |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ∈ V |
7 |
6 4
|
fnmpti |
⊢ 𝐺 Fn ℕ |
8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐺 Fn ℕ ) |
9 |
1 2 3 4
|
mbfi1fseqlem3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) : ℝ ⟶ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
10 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℕ0 ) |
11 |
10
|
nn0red |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℝ ) |
12 |
|
2nn |
⊢ 2 ∈ ℕ |
13 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
14 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
15 |
12 13 14
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
17 |
|
nndivre |
⊢ ( ( 𝑚 ∈ ℝ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝑚 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
18 |
11 16 17
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑚 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
19 |
18
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ⟶ ℝ ) |
20 |
19
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ⊆ ℝ ) |
21 |
9 20
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
22 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ∈ Fin ) |
23 |
19
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) Fn ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) |
24 |
|
dffn4 |
⊢ ( ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) Fn ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
25 |
23 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
26 |
|
fofi |
⊢ ( ( ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ∈ Fin ∧ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ∈ Fin ) |
27 |
22 25 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ∈ Fin ) |
28 |
9
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝐺 ‘ 𝑛 ) ⊆ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
29 |
27 28
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝐺 ‘ 𝑛 ) ∈ Fin ) |
30 |
1 2 3 4
|
mbfi1fseqlem2 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐺 ‘ 𝑛 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ) |
31 |
30
|
fveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) ) |
32 |
31
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) ) |
33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
34 |
|
ovex |
⊢ ( 𝑛 𝐽 𝑥 ) ∈ V |
35 |
|
vex |
⊢ 𝑛 ∈ V |
36 |
34 35
|
ifex |
⊢ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ V |
37 |
|
c0ex |
⊢ 0 ∈ V |
38 |
36 37
|
ifex |
⊢ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ V |
39 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
40 |
39
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
41 |
33 38 40
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
42 |
32 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
43 |
42
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
44 |
43
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) |
45 |
|
eldifsni |
⊢ ( 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) → 𝑘 ≠ 0 ) |
46 |
45
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ≠ 0 ) |
47 |
|
neeq1 |
⊢ ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 ↔ 𝑘 ≠ 0 ) ) |
48 |
46 47
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 ) ) |
49 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 0 ) |
50 |
49
|
necon1ai |
⊢ ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) |
51 |
48 50
|
syl6 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
52 |
51
|
pm4.71rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) ) |
53 |
|
iftrue |
⊢ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) |
54 |
53
|
eqeq1d |
⊢ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) ) |
55 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℕ ) |
56 |
55
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℝ ) |
57 |
56
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑛 ∈ ℝ ) |
58 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
59 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
60 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
61 |
2 59 60
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
62 |
58 61
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
63 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
64 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
65 |
12 63 64
|
sylancr |
⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
66 |
65
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
67 |
66
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
68 |
62 67
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
69 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
70 |
68 69
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
71 |
70 66
|
nndivred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
72 |
71
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
73 |
3
|
fmpo |
⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
74 |
72 73
|
sylib |
⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
75 |
|
fovrn |
⊢ ( ( 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
76 |
74 75
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
77 |
76
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
78 |
77
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
79 |
78
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
80 |
|
lemin |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑛 𝐽 𝑥 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛 ≤ 𝑛 ) ) ) |
81 |
57 79 57 80
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛 ≤ 𝑛 ) ) ) |
82 |
79 57
|
ifcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ) |
83 |
82 57
|
letri3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ↔ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) ) |
84 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑘 = 𝑛 ) |
85 |
84
|
eqeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ) ) |
86 |
|
min2 |
⊢ ( ( ( 𝑛 𝐽 𝑥 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ) |
87 |
79 57 86
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ) |
88 |
87
|
biantrurd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) ) |
89 |
83 85 88
|
3bitr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) |
90 |
57
|
leidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑛 ≤ 𝑛 ) |
91 |
90
|
biantrud |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛 ≤ 𝑛 ) ) ) |
92 |
81 89 91
|
3bitr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) ) |
93 |
|
breq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
94 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
95 |
94
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
96 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
97 |
95 96
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
98 |
97
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
99 |
98
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
100 |
55 15
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
101 |
100
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
102 |
99 101
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
103 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
104 |
102 103
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
105 |
100
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 2 ↑ 𝑛 ) ) |
106 |
|
lemuldiv |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) ) |
107 |
56 104 101 105 106
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) ) |
108 |
|
lemul1 |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
109 |
56 99 101 105 108
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
110 |
|
nnmulcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℕ ) |
111 |
55 15 110
|
syl2anc2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℕ ) |
112 |
111
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
113 |
|
flge |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
114 |
102 112 113
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
115 |
109 114
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
116 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
117 |
|
simpr |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
118 |
117
|
fveq2d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
119 |
|
simpl |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → 𝑚 = 𝑛 ) |
120 |
119
|
oveq2d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) |
121 |
118 120
|
oveq12d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) |
122 |
121
|
fveq2d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
123 |
122 120
|
oveq12d |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
124 |
|
ovex |
⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∈ V |
125 |
123 3 124
|
ovmpoa |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
126 |
55 116 125
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
127 |
126
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) ) |
128 |
107 115 127
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) ) |
129 |
93 128
|
sylan9bbr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) ) |
130 |
116
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑥 ∈ ℝ ) |
131 |
|
iftrue |
⊢ ( 𝑘 = 𝑛 → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ℝ ) |
132 |
131
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ℝ ) |
133 |
130 132
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
134 |
133
|
biantrurd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
135 |
92 129 134
|
3bitr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
136 |
28
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ⊆ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
137 |
136
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
138 |
|
eqid |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) |
139 |
138
|
rnmpt |
⊢ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) = { 𝑘 ∣ ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) } |
140 |
139
|
abeq2i |
⊢ ( 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) |
141 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℤ ) |
142 |
141
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → 𝑚 ∈ ℤ ) |
143 |
142
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → 𝑚 ∈ ℂ ) |
144 |
15
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
145 |
144
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
146 |
144
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
147 |
143 145 146
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) = 𝑚 ) |
148 |
147 142
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
149 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) = ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ) |
150 |
149
|
eleq1d |
⊢ ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ↔ ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
151 |
148 150
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
152 |
151
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
153 |
140 152
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
154 |
153
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
155 |
137 154
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
156 |
155
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
157 |
|
flbi |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
158 |
102 156 157
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
159 |
158
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
160 |
|
neeq1 |
⊢ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 ↔ 𝑘 ≠ 𝑛 ) ) |
161 |
160
|
biimparc |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 ) |
162 |
|
iffalse |
⊢ ( ¬ ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ) |
163 |
162
|
necon1ai |
⊢ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ) |
164 |
161 163
|
syl |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ) |
165 |
164
|
iftrued |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = ( 𝑛 𝐽 𝑥 ) ) |
166 |
|
simpr |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) |
167 |
165 166
|
eqtr3d |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) = 𝑘 ) |
168 |
167 164
|
eqbrtrrd |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → 𝑘 ≤ 𝑛 ) |
169 |
168 167
|
jca |
⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) |
170 |
169
|
ex |
⊢ ( 𝑘 ≠ 𝑛 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 → ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
171 |
|
breq1 |
⊢ ( ( 𝑛 𝐽 𝑥 ) = 𝑘 → ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ↔ 𝑘 ≤ 𝑛 ) ) |
172 |
171
|
biimparc |
⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ) |
173 |
172
|
iftrued |
⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = ( 𝑛 𝐽 𝑥 ) ) |
174 |
|
simpr |
⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) = 𝑘 ) |
175 |
173 174
|
eqtrd |
⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) |
176 |
170 175
|
impbid1 |
⊢ ( 𝑘 ≠ 𝑛 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
177 |
176
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
178 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) → 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) ) |
179 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
180 |
179
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℝ ) |
181 |
77 180 86
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ) |
182 |
13
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℕ0 ) |
183 |
182
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ 𝑛 ) |
184 |
|
breq1 |
⊢ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) ) |
185 |
|
breq1 |
⊢ ( 0 = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) → ( 0 ≤ 𝑛 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) ) |
186 |
184 185
|
ifboth |
⊢ ( ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 0 ≤ 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) |
187 |
181 183 186
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) |
188 |
42 187
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) |
189 |
188
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) |
190 |
9
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) Fn ℝ ) |
191 |
|
breq1 |
⊢ ( 𝑘 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) → ( 𝑘 ≤ 𝑛 ↔ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) ) |
192 |
191
|
ralrn |
⊢ ( ( 𝐺 ‘ 𝑛 ) Fn ℝ → ( ∀ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) 𝑘 ≤ 𝑛 ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) ) |
193 |
190 192
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) 𝑘 ≤ 𝑛 ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) ) |
194 |
189 193
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) 𝑘 ≤ 𝑛 ) |
195 |
194
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) ) → 𝑘 ≤ 𝑛 ) |
196 |
178 195
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑘 ≤ 𝑛 ) |
197 |
196
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → 𝑘 ≤ 𝑛 ) |
198 |
197
|
biantrurd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
199 |
126
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) = 𝑘 ) ) |
200 |
104
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℂ ) |
201 |
28 20
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝐺 ‘ 𝑛 ) ⊆ ℝ ) |
202 |
201
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ⊆ ℝ ) |
203 |
202
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑘 ∈ ℝ ) |
204 |
203
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℝ ) |
205 |
204
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℂ ) |
206 |
100
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
207 |
100
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
208 |
200 205 206 207
|
divmul3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
209 |
199 208
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
210 |
209
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
211 |
177 198 210
|
3bitr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
212 |
|
ifnefalse |
⊢ ( 𝑘 ≠ 𝑛 → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
213 |
212
|
eleq2d |
⊢ ( 𝑘 ≠ 𝑛 → ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ↔ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
214 |
100
|
nnrecred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
215 |
204 214
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
216 |
215
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* ) |
217 |
|
elioomnf |
⊢ ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
218 |
216 217
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
219 |
94
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
220 |
219
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 Fn ℝ ) |
221 |
|
elpreima |
⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
222 |
220 221
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
223 |
116 222
|
mpbirand |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
224 |
99
|
biantrurd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
225 |
218 223 224
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
226 |
|
ltmul1 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ) ) |
227 |
99 215 101 105 226
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ) ) |
228 |
214
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℂ ) |
229 |
206 207
|
recid2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 1 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) = 1 ) |
230 |
229
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + ( ( 1 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ) = ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) |
231 |
205 206 228 230
|
joinlmuladdmuld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) = ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) |
232 |
231
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) |
233 |
225 227 232
|
3bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) |
234 |
213 233
|
sylan9bbr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) |
235 |
|
lemul1 |
⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
236 |
204 99 101 105 235
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
237 |
236
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
238 |
234 237
|
anbi12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ∧ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
239 |
238
|
biancomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
240 |
159 211 239
|
3bitr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
241 |
135 240
|
pm2.61dane |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
242 |
|
eldif |
⊢ ( 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) |
243 |
204
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℝ* ) |
244 |
|
elioomnf |
⊢ ( 𝑘 ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) ) |
245 |
243 244
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) ) |
246 |
|
elpreima |
⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) ) |
247 |
220 246
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) ) |
248 |
116 247
|
mpbirand |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) |
249 |
99
|
biantrurd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑘 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) ) |
250 |
245 248 249
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) |
251 |
250
|
notbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) |
252 |
204 99
|
lenltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) |
253 |
251 252
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
254 |
253
|
anbi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
255 |
242 254
|
syl5bb |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
256 |
241 255
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
257 |
54 256
|
sylan9bbr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
258 |
257
|
pm5.32da |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) |
259 |
44 52 258
|
3bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) |
260 |
259
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) ) |
261 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
262 |
261
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑛 ) Fn ℝ ) |
263 |
|
fniniseg |
⊢ ( ( 𝐺 ‘ 𝑛 ) Fn ℝ → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) ) |
264 |
262 263
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) ) |
265 |
|
elin |
⊢ ( 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
266 |
179
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑛 ∈ ℝ ) |
267 |
266
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → - 𝑛 ∈ ℝ ) |
268 |
|
iccmbl |
⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) |
269 |
267 266 268
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) |
270 |
|
mblss |
⊢ ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
271 |
269 270
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
272 |
271
|
sseld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → 𝑥 ∈ ℝ ) ) |
273 |
272
|
adantrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) → 𝑥 ∈ ℝ ) ) |
274 |
273
|
pm4.71rd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) ) |
275 |
265 274
|
syl5bb |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) ) |
276 |
260 264 275
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) |
277 |
276
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) = ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
278 |
|
rembl |
⊢ ℝ ∈ dom vol |
279 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
280 |
2 58 279
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
281 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) |
282 |
1 280 281
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) |
283 |
|
ifcl |
⊢ ( ( ℝ ∈ dom vol ∧ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ) |
284 |
278 282 283
|
sylancr |
⊢ ( 𝜑 → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ) |
285 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) |
286 |
1 280 285
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) |
287 |
|
difmbl |
⊢ ( ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) → ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) |
288 |
284 286 287
|
syl2anc |
⊢ ( 𝜑 → ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) |
289 |
288
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) |
290 |
|
inmbl |
⊢ ( ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol ∧ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) → ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ∈ dom vol ) |
291 |
269 289 290
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ∈ dom vol ) |
292 |
277 291
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ∈ dom vol ) |
293 |
|
mblvol |
⊢ ( ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ∈ dom vol → ( vol ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ) |
294 |
292 293
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ) |
295 |
190
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑛 ) Fn ℝ ) |
296 |
295 263
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) ) |
297 |
77 180
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ) |
298 |
|
0re |
⊢ 0 ∈ ℝ |
299 |
|
ifcl |
⊢ ( ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) |
300 |
297 298 299
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) |
301 |
39
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
302 |
33 300 301
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
303 |
32 302
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
304 |
303
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
305 |
304
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) |
306 |
305 51
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
307 |
306
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
308 |
296 307
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
309 |
308
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ⊆ ( - 𝑛 [,] 𝑛 ) ) |
310 |
|
iccssre |
⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
311 |
267 266 310
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
312 |
|
mblvol |
⊢ ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) = ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ) |
313 |
269 312
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) = ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ) |
314 |
|
iccvolcl |
⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) |
315 |
267 266 314
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) |
316 |
313 315
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) |
317 |
|
ovolsscl |
⊢ ( ( ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ⊆ ( - 𝑛 [,] 𝑛 ) ∧ ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) → ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ∈ ℝ ) |
318 |
309 311 316 317
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ∈ ℝ ) |
319 |
294 318
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ∈ ℝ ) |
320 |
21 29 292 319
|
i1fd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ dom ∫1 ) |
321 |
320
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ dom ∫1 ) |
322 |
|
ffnfv |
⊢ ( 𝐺 : ℕ ⟶ dom ∫1 ↔ ( 𝐺 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ dom ∫1 ) ) |
323 |
8 321 322
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ dom ∫1 ) |