Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfi1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
mbfi1fseq.3 |
⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
4 |
|
mbfi1fseq.4 |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
6 |
5
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
7 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
6 7
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
9 |
8
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
10 |
|
2nn |
⊢ 2 ∈ ℕ |
11 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
12 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐴 ∈ ℕ0 ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
13 |
10 11 12
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
15 |
14
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℝ ) |
16 |
9 15
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ) |
17 |
14
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℕ0 ) |
18 |
17
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 2 ↑ 𝐴 ) ) |
19 |
|
mulge0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐴 ) ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
20 |
8 15 18 19
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
21 |
|
flge0nn0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) |
22 |
16 20 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) |
23 |
22
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℝ ) |
24 |
22
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
25 |
14
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 2 ↑ 𝐴 ) ) |
26 |
|
divge0 |
⊢ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) ∧ ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐴 ) ) ) → 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
27 |
23 24 15 25 26
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
28 |
|
simpr |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
29 |
28
|
fveq2d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
30 |
|
simpl |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝑚 = 𝐴 ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝐴 ) ) |
32 |
29 31
|
oveq12d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
33 |
32
|
fveq2d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
34 |
33 31
|
oveq12d |
⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
35 |
|
ovex |
⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ V |
36 |
34 3 35
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
37 |
36
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
38 |
27 37
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐴 𝐽 𝑥 ) ) |
39 |
11
|
nn0ge0d |
⊢ ( 𝐴 ∈ ℕ → 0 ≤ 𝐴 ) |
40 |
39
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ 𝐴 ) |
41 |
|
breq2 |
⊢ ( ( 𝐴 𝐽 𝑥 ) = if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) → ( 0 ≤ ( 𝐴 𝐽 𝑥 ) ↔ 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) ) |
42 |
|
breq2 |
⊢ ( 𝐴 = if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) → ( 0 ≤ 𝐴 ↔ 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) ) |
43 |
41 42
|
ifboth |
⊢ ( ( 0 ≤ ( 𝐴 𝐽 𝑥 ) ∧ 0 ≤ 𝐴 ) → 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) |
44 |
38 40 43
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) |
45 |
|
0le0 |
⊢ 0 ≤ 0 |
46 |
|
breq2 |
⊢ ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) → ( 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ↔ 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
47 |
|
breq2 |
⊢ ( 0 = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
48 |
46 47
|
ifboth |
⊢ ( ( 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ∧ 0 ≤ 0 ) → 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
49 |
44 45 48
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
50 |
49
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
51 |
|
0re |
⊢ 0 ∈ ℝ |
52 |
|
fnconstg |
⊢ ( 0 ∈ ℝ → ( ℂ × { 0 } ) Fn ℂ ) |
53 |
51 52
|
ax-mp |
⊢ ( ℂ × { 0 } ) Fn ℂ |
54 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
55 |
54
|
fneq1i |
⊢ ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ ) |
56 |
53 55
|
mpbir |
⊢ 0𝑝 Fn ℂ |
57 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → 0𝑝 Fn ℂ ) |
58 |
1 2 3 4
|
mbfi1fseqlem4 |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ dom ∫1 ) |
59 |
58
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) ∈ dom ∫1 ) |
60 |
|
i1ff |
⊢ ( ( 𝐺 ‘ 𝐴 ) ∈ dom ∫1 → ( 𝐺 ‘ 𝐴 ) : ℝ ⟶ ℝ ) |
61 |
|
ffn |
⊢ ( ( 𝐺 ‘ 𝐴 ) : ℝ ⟶ ℝ → ( 𝐺 ‘ 𝐴 ) Fn ℝ ) |
62 |
59 60 61
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) Fn ℝ ) |
63 |
|
cnex |
⊢ ℂ ∈ V |
64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ℂ ∈ V ) |
65 |
|
reex |
⊢ ℝ ∈ V |
66 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ℝ ∈ V ) |
67 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
68 |
|
sseqin2 |
⊢ ( ℝ ⊆ ℂ ↔ ( ℂ ∩ ℝ ) = ℝ ) |
69 |
67 68
|
mpbi |
⊢ ( ℂ ∩ ℝ ) = ℝ |
70 |
|
0pval |
⊢ ( 𝑥 ∈ ℂ → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
71 |
70
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℂ ) → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
72 |
1 2 3 4
|
mbfi1fseqlem2 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐺 ‘ 𝐴 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
73 |
72
|
fveq1d |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝐺 ‘ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ‘ 𝑥 ) ) |
74 |
73
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ‘ 𝑥 ) ) |
75 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
76 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
77 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
78 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
79 |
2 77 78
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
80 |
76 79
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
81 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
82 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
83 |
10 81 82
|
sylancr |
⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
84 |
83
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
85 |
84
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
86 |
80 85
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
87 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
88 |
86 87
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
89 |
88 84
|
nndivred |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
90 |
89
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
91 |
3
|
fmpo |
⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
92 |
90 91
|
sylib |
⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
93 |
|
fovrn |
⊢ ( ( 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
94 |
92 93
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
95 |
94
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
96 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
97 |
96
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
98 |
95 97
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ∈ ℝ ) |
99 |
|
ifcl |
⊢ ( ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ∈ ℝ ) |
100 |
98 51 99
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ∈ ℝ ) |
101 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
102 |
101
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
103 |
75 100 102
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
104 |
74 103
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝐴 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
105 |
57 62 64 66 69 71 104
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
106 |
50 105
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝐴 ) ) |
107 |
1 2 3
|
mbfi1fseqlem1 |
⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ( 0 [,) +∞ ) ) |
108 |
107
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐽 : ( ℕ × ℝ ) ⟶ ( 0 [,) +∞ ) ) |
109 |
|
peano2nn |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) |
110 |
109
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℕ ) |
111 |
108 110 75
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
112 |
|
elrege0 |
⊢ ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) ) |
113 |
111 112
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) ) |
114 |
113
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ℝ ) |
115 |
|
min1 |
⊢ ( ( ( 𝐴 𝐽 𝑥 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 𝐽 𝑥 ) ) |
116 |
95 97 115
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 𝐽 𝑥 ) ) |
117 |
|
2cn |
⊢ 2 ∈ ℂ |
118 |
11
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℕ0 ) |
119 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ 𝐴 ∈ ℕ0 ) → ( 2 ↑ ( 𝐴 + 1 ) ) = ( ( 2 ↑ 𝐴 ) · 2 ) ) |
120 |
117 118 119
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ ( 𝐴 + 1 ) ) = ( ( 2 ↑ 𝐴 ) · 2 ) ) |
121 |
120
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( ( 2 ↑ 𝐴 ) · 2 ) ) ) |
122 |
37 95
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ ℝ ) |
123 |
122
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ ℂ ) |
124 |
15
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℂ ) |
125 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 2 ∈ ℂ ) |
126 |
123 124 125
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) · 2 ) = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( ( 2 ↑ 𝐴 ) · 2 ) ) ) |
127 |
23
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℂ ) |
128 |
14
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ≠ 0 ) |
129 |
127 124 128
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
130 |
129
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) · 2 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ) |
131 |
121 126 130
|
3eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ) |
132 |
|
flle |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
133 |
16 132
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
134 |
|
2re |
⊢ 2 ∈ ℝ |
135 |
|
2pos |
⊢ 0 < 2 |
136 |
134 135
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
137 |
136
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
138 |
|
lemul1 |
⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) ) ) |
139 |
23 16 137 138
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) ) ) |
140 |
133 139
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) ) |
141 |
120
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( ( 2 ↑ 𝐴 ) · 2 ) ) ) |
142 |
9
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
143 |
142 124 125
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) = ( ( 𝐹 ‘ 𝑥 ) · ( ( 2 ↑ 𝐴 ) · 2 ) ) ) |
144 |
141 143
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) ) |
145 |
140 144
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
146 |
110
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℕ0 ) |
147 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝐴 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℕ ) |
148 |
10 146 147
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℕ ) |
149 |
148
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℝ ) |
150 |
9 149
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ ) |
151 |
16
|
flcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℤ ) |
152 |
|
2z |
⊢ 2 ∈ ℤ |
153 |
|
zmulcl |
⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ∈ ℤ ) |
154 |
151 152 153
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ∈ ℤ ) |
155 |
|
flge |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ ∧ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ∈ ℤ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) ) |
156 |
150 154 155
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) ) |
157 |
145 156
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) |
158 |
131 157
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) |
159 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ∈ ℝ ) |
160 |
150 159
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ∈ ℝ ) |
161 |
148
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 2 ↑ ( 𝐴 + 1 ) ) ) |
162 |
|
lemuldiv |
⊢ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ ℝ ∧ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ∈ ℝ ∧ ( ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℝ ∧ 0 < ( 2 ↑ ( 𝐴 + 1 ) ) ) ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) |
163 |
122 160 149 161 162
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) |
164 |
158 163
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
165 |
|
simpr |
⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
166 |
165
|
fveq2d |
⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
167 |
|
simpl |
⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → 𝑚 = ( 𝐴 + 1 ) ) |
168 |
167
|
oveq2d |
⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ ( 𝐴 + 1 ) ) ) |
169 |
166 168
|
oveq12d |
⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
170 |
169
|
fveq2d |
⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) |
171 |
170 168
|
oveq12d |
⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
172 |
|
ovex |
⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ∈ V |
173 |
171 3 172
|
ovmpoa |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 + 1 ) 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
174 |
110 75 173
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 + 1 ) 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
175 |
164 37 174
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) |
176 |
98 95 114 116 175
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) |
177 |
110
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℝ ) |
178 |
|
min2 |
⊢ ( ( ( 𝐴 𝐽 𝑥 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ 𝐴 ) |
179 |
95 97 178
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ 𝐴 ) |
180 |
97
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ≤ ( 𝐴 + 1 ) ) |
181 |
98 97 177 179 180
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 + 1 ) ) |
182 |
|
breq2 |
⊢ ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) → ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ↔ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) ) |
183 |
|
breq2 |
⊢ ( ( 𝐴 + 1 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) → ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 + 1 ) ↔ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) ) |
184 |
182 183
|
ifboth |
⊢ ( ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∧ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 + 1 ) ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
185 |
176 181 184
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
186 |
185
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
187 |
|
iftrue |
⊢ ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) = if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) |
188 |
187
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) = if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) |
189 |
177
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → - ( 𝐴 + 1 ) ∈ ℝ ) |
190 |
97 177
|
lenegd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ - ( 𝐴 + 1 ) ≤ - 𝐴 ) ) |
191 |
180 190
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → - ( 𝐴 + 1 ) ≤ - 𝐴 ) |
192 |
|
iccss |
⊢ ( ( ( - ( 𝐴 + 1 ) ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ ( - ( 𝐴 + 1 ) ≤ - 𝐴 ∧ 𝐴 ≤ ( 𝐴 + 1 ) ) ) → ( - 𝐴 [,] 𝐴 ) ⊆ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) ) |
193 |
189 177 191 180 192
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( - 𝐴 [,] 𝐴 ) ⊆ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) ) |
194 |
193
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) ) |
195 |
194
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
196 |
186 188 195
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
197 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) = 0 ) |
198 |
197
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) = 0 ) |
199 |
113
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) |
200 |
146
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐴 + 1 ) ) |
201 |
|
breq2 |
⊢ ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) → ( 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ↔ 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) ) |
202 |
|
breq2 |
⊢ ( ( 𝐴 + 1 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) → ( 0 ≤ ( 𝐴 + 1 ) ↔ 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) ) |
203 |
201 202
|
ifboth |
⊢ ( ( 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∧ 0 ≤ ( 𝐴 + 1 ) ) → 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
204 |
199 200 203
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
205 |
|
breq2 |
⊢ ( if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) → ( 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ↔ 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ) |
206 |
|
breq2 |
⊢ ( 0 = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ) |
207 |
205 206
|
ifboth |
⊢ ( ( 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ∧ 0 ≤ 0 ) → 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
208 |
204 45 207
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
209 |
208
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
210 |
198 209
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
211 |
196 210
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
212 |
211
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
213 |
|
ffvelrn |
⊢ ( ( 𝐺 : ℕ ⟶ dom ∫1 ∧ ( 𝐴 + 1 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝐴 + 1 ) ) ∈ dom ∫1 ) |
214 |
58 109 213
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐴 + 1 ) ) ∈ dom ∫1 ) |
215 |
|
i1ff |
⊢ ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) ∈ dom ∫1 → ( 𝐺 ‘ ( 𝐴 + 1 ) ) : ℝ ⟶ ℝ ) |
216 |
|
ffn |
⊢ ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) : ℝ ⟶ ℝ → ( 𝐺 ‘ ( 𝐴 + 1 ) ) Fn ℝ ) |
217 |
214 215 216
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐴 + 1 ) ) Fn ℝ ) |
218 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
219 |
1 2 3 4
|
mbfi1fseqlem2 |
⊢ ( ( 𝐴 + 1 ) ∈ ℕ → ( 𝐺 ‘ ( 𝐴 + 1 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ) |
220 |
219
|
fveq1d |
⊢ ( ( 𝐴 + 1 ) ∈ ℕ → ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ‘ 𝑥 ) ) |
221 |
110 220
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ‘ 𝑥 ) ) |
222 |
114 177
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ∈ ℝ ) |
223 |
|
ifcl |
⊢ ( ( if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ∈ ℝ ) |
224 |
222 51 223
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ∈ ℝ ) |
225 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
226 |
225
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
227 |
75 224 226
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
228 |
221 227
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
229 |
62 217 66 66 218 104 228
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( 𝐺 ‘ 𝐴 ) ∘r ≤ ( 𝐺 ‘ ( 𝐴 + 1 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ) |
230 |
212 229
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) ∘r ≤ ( 𝐺 ‘ ( 𝐴 + 1 ) ) ) |
231 |
106 230
|
jca |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝐴 ) ∧ ( 𝐺 ‘ 𝐴 ) ∘r ≤ ( 𝐺 ‘ ( 𝐴 + 1 ) ) ) ) |