Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfi1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
mbfi1fseq.3 |
⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
4 |
|
mbfi1fseq.4 |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) |
5 |
1 2 3 4
|
mbfi1fseqlem4 |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ dom ∫1 ) |
6 |
1 2 3 4
|
mbfi1fseqlem5 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
10 |
9
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
11 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
12 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
14 |
13
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
15 |
10 14
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
16 |
|
arch |
⊢ ( ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ → ∃ 𝑘 ∈ ℕ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) |
17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) |
18 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑘 ) |
19 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
20 |
19
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → 𝑘 ∈ ℤ ) |
21 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
22 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℤ ) |
23 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 1 / 2 ) ∈ ℂ ) |
25 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
26 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
27 |
|
absid |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) |
28 |
25 26 27
|
mp2an |
⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
29 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
30 |
28 29
|
eqbrtri |
⊢ ( abs ‘ ( 1 / 2 ) ) < 1 |
31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( abs ‘ ( 1 / 2 ) ) < 1 ) |
32 |
24 31
|
expcnv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) |
33 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
34 |
|
nnex |
⊢ ℕ ∈ V |
35 |
34
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ∈ V |
36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ∈ V ) |
37 |
|
nnnn0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
39 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
40 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) |
41 |
|
ovex |
⊢ ( ( 1 / 2 ) ↑ 𝑗 ) ∈ V |
42 |
39 40 41
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
43 |
38 42
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
44 |
|
expcl |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℂ ) |
45 |
23 38 44
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℂ ) |
46 |
43 45
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
47 |
39
|
oveq2d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
48 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) |
49 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ∈ V |
50 |
47 48 49
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
51 |
50
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
52 |
43
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
53 |
51 52
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) ) ) |
54 |
21 22 32 33 36 46 53
|
climsubc2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( ( 𝐹 ‘ 𝑥 ) − 0 ) ) |
55 |
33
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) − 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
56 |
54 55
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
58 |
34
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V |
59 |
58
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V ) |
60 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → 𝑘 ∈ ℕ ) |
61 |
|
eluznn |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℕ ) |
62 |
60 61
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℕ ) |
63 |
62 50
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ) |
64 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
65 |
62 37
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℕ0 ) |
66 |
|
reexpcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℝ ) |
67 |
25 65 66
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℝ ) |
68 |
64 67
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ∈ ℝ ) |
69 |
63 68
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) ∈ ℝ ) |
70 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑗 ) ) |
71 |
70
|
fveq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ) |
72 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) |
73 |
|
fvex |
⊢ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ∈ V |
74 |
71 72 73
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ) |
75 |
62 74
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ) |
76 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝐺 : ℕ ⟶ dom ∫1 ) |
77 |
76 62
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ dom ∫1 ) |
78 |
|
i1ff |
⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ dom ∫1 → ( 𝐺 ‘ 𝑗 ) : ℝ ⟶ ℝ ) |
79 |
77 78
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑗 ) : ℝ ⟶ ℝ ) |
80 |
8
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑥 ∈ ℝ ) |
81 |
79 80
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
82 |
75 81
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ∈ ℝ ) |
83 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
84 |
|
2nn |
⊢ 2 ∈ ℕ |
85 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
86 |
84 65 85
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
87 |
86
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 ↑ 𝑗 ) ∈ ℝ ) |
88 |
87
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 ↑ 𝑗 ) ∈ ℂ ) |
89 |
86
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 ↑ 𝑗 ) ≠ 0 ) |
90 |
83 88 89
|
divcan4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) / ( 2 ↑ 𝑗 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
91 |
90
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) / ( 2 ↑ 𝑗 ) ) ) |
92 |
|
2cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 2 ∈ ℂ ) |
93 |
|
2ne0 |
⊢ 2 ≠ 0 |
94 |
93
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 2 ≠ 0 ) |
95 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) → 𝑗 ∈ ℤ ) |
96 |
95
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℤ ) |
97 |
92 94 96
|
exprecd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 1 / 2 ) ↑ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) ) |
98 |
91 97
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) = ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) / ( 2 ↑ 𝑗 ) ) − ( 1 / ( 2 ↑ 𝑗 ) ) ) ) |
99 |
64 87
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
100 |
99
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℂ ) |
101 |
|
1cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 1 ∈ ℂ ) |
102 |
100 101 88 89
|
divsubdird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) = ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) / ( 2 ↑ 𝑗 ) ) − ( 1 / ( 2 ↑ 𝑗 ) ) ) ) |
103 |
98 102
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) = ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) ) |
104 |
|
fllep1 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) + 1 ) ) |
105 |
99 104
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) + 1 ) ) |
106 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 1 ∈ ℝ ) |
107 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) |
108 |
99 107
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) |
109 |
99 106 108
|
lesubaddd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) + 1 ) ) ) |
110 |
105 109
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ) |
111 |
|
peano2rem |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ∈ ℝ ) |
112 |
99 111
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ∈ ℝ ) |
113 |
86
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 0 < ( 2 ↑ 𝑗 ) ) |
114 |
|
lediv1 |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ∈ ℝ ∧ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑗 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑗 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) ) |
115 |
112 108 87 113 114
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) ) |
116 |
110 115
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) − 1 ) / ( 2 ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
117 |
103 116
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑗 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
118 |
1 2 3 4
|
mbfi1fseqlem2 |
⊢ ( 𝑗 ∈ ℕ → ( 𝐺 ‘ 𝑗 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ) |
119 |
62 118
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑗 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ) |
120 |
119
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ‘ 𝑥 ) ) |
121 |
|
ovex |
⊢ ( 𝑗 𝐽 𝑥 ) ∈ V |
122 |
|
vex |
⊢ 𝑗 ∈ V |
123 |
121 122
|
ifex |
⊢ if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) ∈ V |
124 |
|
c0ex |
⊢ 0 ∈ V |
125 |
123 124
|
ifex |
⊢ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ∈ V |
126 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) |
127 |
126
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) |
128 |
80 125 127
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) |
129 |
75 120 128
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) ) |
130 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
131 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
132 |
62
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ ℝ ) |
133 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
134 |
133 12
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
135 |
134
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
136 |
130 64
|
addge01d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( abs ‘ 𝑥 ) ≤ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ) ) |
137 |
135 136
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ 𝑥 ) ≤ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ) |
138 |
60
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℕ ) |
139 |
138
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℝ ) |
140 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) |
141 |
131 139 140
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑘 ) |
142 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) → 𝑘 ≤ 𝑗 ) |
143 |
142
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ≤ 𝑗 ) |
144 |
131 139 132 141 143
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑗 ) |
145 |
130 131 132 137 144
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ 𝑥 ) ≤ 𝑗 ) |
146 |
80 132
|
absled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ 𝑥 ) ≤ 𝑗 ↔ ( - 𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗 ) ) ) |
147 |
145 146
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( - 𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗 ) ) |
148 |
147
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → - 𝑗 ≤ 𝑥 ) |
149 |
147
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑥 ≤ 𝑗 ) |
150 |
132
|
renegcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → - 𝑗 ∈ ℝ ) |
151 |
|
elicc2 |
⊢ ( ( - 𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) ↔ ( 𝑥 ∈ ℝ ∧ - 𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗 ) ) ) |
152 |
150 132 151
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) ↔ ( 𝑥 ∈ ℝ ∧ - 𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗 ) ) ) |
153 |
80 148 149 152
|
mpbir3and |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) ) |
154 |
153
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( - 𝑗 [,] 𝑗 ) , if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) , 0 ) = if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) ) |
155 |
|
simpr |
⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
156 |
155
|
fveq2d |
⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
157 |
|
simpl |
⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → 𝑚 = 𝑗 ) |
158 |
157
|
oveq2d |
⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑗 ) ) |
159 |
156 158
|
oveq12d |
⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) |
160 |
159
|
fveq2d |
⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ) |
161 |
160 158
|
oveq12d |
⊢ ( ( 𝑚 = 𝑗 ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
162 |
|
ovex |
⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ∈ V |
163 |
161 3 162
|
ovmpoa |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑗 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
164 |
62 80 163
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑗 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
165 |
108 86
|
nndivred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
166 |
|
flle |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) |
167 |
99 166
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) |
168 |
|
ledivmul2 |
⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑗 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑗 ) ) ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ) |
169 |
108 64 87 113 168
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) ) |
170 |
167 169
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
171 |
9
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑥 ∈ ℂ ) |
172 |
171
|
absge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 0 ≤ ( abs ‘ 𝑥 ) ) |
173 |
64 130
|
addge02d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 0 ≤ ( abs ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ) ) |
174 |
172 173
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) ) |
175 |
64 131 132 174 144
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑗 ) |
176 |
165 64 132 170 175
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ≤ 𝑗 ) |
177 |
164 176
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 ) |
178 |
177
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) = ( 𝑗 𝐽 𝑥 ) ) |
179 |
178 164
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → if ( ( 𝑗 𝐽 𝑥 ) ≤ 𝑗 , ( 𝑗 𝐽 𝑥 ) , 𝑗 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
180 |
129 154 179
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) |
181 |
117 63 180
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) − ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) |
182 |
180 170
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
183 |
18 20 57 59 69 82 181 182
|
climsqz |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ ( ( abs ‘ 𝑥 ) + ( 𝐹 ‘ 𝑥 ) ) < 𝑘 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
184 |
17 183
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
185 |
184
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
186 |
34
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) ∈ V |
187 |
4 186
|
eqeltri |
⊢ 𝐺 ∈ V |
188 |
|
feq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 : ℕ ⟶ dom ∫1 ↔ 𝐺 : ℕ ⟶ dom ∫1 ) ) |
189 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
190 |
189
|
breq2d |
⊢ ( 𝑔 = 𝐺 → ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ↔ 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ) ) |
191 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
192 |
189 191
|
breq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
193 |
190 192
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ↔ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
194 |
193
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ↔ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
195 |
189
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) |
196 |
195
|
mpteq2dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
197 |
196
|
breq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
198 |
197
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
199 |
188 194 198
|
3anbi123d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐺 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) ) |
200 |
187 199
|
spcev |
⊢ ( ( 𝐺 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ∘r ≤ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
201 |
5 7 185 200
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |