| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfi1fseq.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfi1fseq.2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 3 |  | mbfi1fseq.3 | ⊢ 𝐽  =  ( 𝑚  ∈  ℕ ,  𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 )  ·  ( 2 ↑ 𝑚 ) ) )  /  ( 2 ↑ 𝑚 ) ) ) | 
						
							| 4 |  | mbfi1fseq.4 | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 𝐽 𝑥 )  ≤  𝑚 ,  ( 𝑚 𝐽 𝑥 ) ,  𝑚 ) ,  0 ) ) ) | 
						
							| 5 | 1 2 3 4 | mbfi1fseqlem4 | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ dom  ∫1 ) | 
						
							| 6 | 1 2 3 4 | mbfi1fseqlem5 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 0𝑝  ∘r   ≤  ( 𝐺 ‘ 𝑛 )  ∧  ( 𝐺 ‘ 𝑛 )  ∘r   ≤  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 7 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝐺 ‘ 𝑛 )  ∧  ( 𝐺 ‘ 𝑛 )  ∘r   ≤  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 9 | 8 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 10 | 9 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( abs ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 11 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 12 |  | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 15 | 10 14 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 16 |  | arch | ⊢ ( ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ  →  ∃ 𝑘  ∈  ℕ ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑘  ∈  ℕ ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) | 
						
							| 18 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑘 )  =  ( ℤ≥ ‘ 𝑘 ) | 
						
							| 19 |  | nnz | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℤ ) | 
						
							| 20 | 19 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 21 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 22 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  1  ∈  ℤ ) | 
						
							| 23 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 25 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 26 |  | halfge0 | ⊢ 0  ≤  ( 1  /  2 ) | 
						
							| 27 |  | absid | ⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  0  ≤  ( 1  /  2 ) )  →  ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 ) ) | 
						
							| 28 | 25 26 27 | mp2an | ⊢ ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 ) | 
						
							| 29 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 30 | 28 29 | eqbrtri | ⊢ ( abs ‘ ( 1  /  2 ) )  <  1 | 
						
							| 31 | 30 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( abs ‘ ( 1  /  2 ) )  <  1 ) | 
						
							| 32 | 24 31 | expcnv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ⇝  0 ) | 
						
							| 33 | 14 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 34 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 35 | 34 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) )  ∈  V | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) )  ∈  V ) | 
						
							| 37 |  | nnnn0 | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ0 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ0 ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑛  =  𝑗  →  ( ( 1  /  2 ) ↑ 𝑛 )  =  ( ( 1  /  2 ) ↑ 𝑗 ) ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) ) | 
						
							| 41 |  | ovex | ⊢ ( ( 1  /  2 ) ↑ 𝑗 )  ∈  V | 
						
							| 42 | 39 40 41 | fvmpt | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) ) ‘ 𝑗 )  =  ( ( 1  /  2 ) ↑ 𝑗 ) ) | 
						
							| 43 | 38 42 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) ) ‘ 𝑗 )  =  ( ( 1  /  2 ) ↑ 𝑗 ) ) | 
						
							| 44 |  | expcl | ⊢ ( ( ( 1  /  2 )  ∈  ℂ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 1  /  2 ) ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 45 | 23 38 44 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 1  /  2 ) ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 46 | 43 45 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 47 | 39 | oveq2d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) ) ) | 
						
							| 48 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) ) | 
						
							| 49 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) )  ∈  V | 
						
							| 50 | 47 48 49 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) ) ) | 
						
							| 52 | 43 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) ) ) | 
						
							| 53 | 51 52 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) ) ‘ 𝑗 ) ) ) | 
						
							| 54 | 21 22 32 33 36 46 53 | climsubc2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) )  ⇝  ( ( 𝐹 ‘ 𝑥 )  −  0 ) ) | 
						
							| 55 | 33 | subid1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑥 )  −  0 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 56 | 54 55 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 58 | 34 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  V | 
						
							| 59 | 58 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  V ) | 
						
							| 60 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 61 |  | eluznn | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 62 | 60 61 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 63 | 62 50 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) ) ) | 
						
							| 64 | 14 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 65 | 62 37 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 66 |  | reexpcl | ⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 1  /  2 ) ↑ 𝑗 )  ∈  ℝ ) | 
						
							| 67 | 25 65 66 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 1  /  2 ) ↑ 𝑗 )  ∈  ℝ ) | 
						
							| 68 | 64 67 | resubcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) )  ∈  ℝ ) | 
						
							| 69 | 63 68 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 71 | 70 | fveq1d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 72 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 73 |  | fvex | ⊢ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 )  ∈  V | 
						
							| 74 | 71 72 73 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  =  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 75 | 62 74 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  =  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 76 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝐺 : ℕ ⟶ dom  ∫1 ) | 
						
							| 77 | 76 62 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝐺 ‘ 𝑗 )  ∈  dom  ∫1 ) | 
						
							| 78 |  | i1ff | ⊢ ( ( 𝐺 ‘ 𝑗 )  ∈  dom  ∫1  →  ( 𝐺 ‘ 𝑗 ) : ℝ ⟶ ℝ ) | 
						
							| 79 | 77 78 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝐺 ‘ 𝑗 ) : ℝ ⟶ ℝ ) | 
						
							| 80 | 8 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 81 | 79 80 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 82 | 75 81 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 83 | 33 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 84 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 85 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 2 ↑ 𝑗 )  ∈  ℕ ) | 
						
							| 86 | 84 65 85 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 2 ↑ 𝑗 )  ∈  ℕ ) | 
						
							| 87 | 86 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 2 ↑ 𝑗 )  ∈  ℝ ) | 
						
							| 88 | 87 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 2 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 89 | 86 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 2 ↑ 𝑗 )  ≠  0 ) | 
						
							| 90 | 83 88 89 | divcan4d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  /  ( 2 ↑ 𝑗 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 91 | 90 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 92 |  | 2cnd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  2  ∈  ℂ ) | 
						
							| 93 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 94 | 93 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  2  ≠  0 ) | 
						
							| 95 |  | eluzelz | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  →  𝑗  ∈  ℤ ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 97 | 92 94 96 | exprecd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 1  /  2 ) ↑ 𝑗 )  =  ( 1  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 98 | 91 97 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) )  =  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  /  ( 2 ↑ 𝑗 ) )  −  ( 1  /  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 99 | 64 87 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  ∈  ℝ ) | 
						
							| 100 | 99 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  ∈  ℂ ) | 
						
							| 101 |  | 1cnd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  1  ∈  ℂ ) | 
						
							| 102 | 100 101 88 89 | divsubdird | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  /  ( 2 ↑ 𝑗 ) )  =  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  /  ( 2 ↑ 𝑗 ) )  −  ( 1  /  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 103 | 98 102 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) )  =  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 104 |  | fllep1 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  ∈  ℝ  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  ≤  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  +  1 ) ) | 
						
							| 105 | 99 104 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  ≤  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  +  1 ) ) | 
						
							| 106 |  | 1red | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  1  ∈  ℝ ) | 
						
							| 107 |  | reflcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  ∈  ℝ  →  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 108 | 99 107 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 109 | 99 106 108 | lesubaddd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  ≤  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ↔  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  ≤  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  +  1 ) ) ) | 
						
							| 110 | 105 109 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  ≤  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 111 |  | peano2rem | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  ∈  ℝ  →  ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  ∈  ℝ ) | 
						
							| 112 | 99 111 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  ∈  ℝ ) | 
						
							| 113 | 86 | nngt0d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  0  <  ( 2 ↑ 𝑗 ) ) | 
						
							| 114 |  | lediv1 | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  ∈  ℝ  ∧  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ∈  ℝ  ∧  ( ( 2 ↑ 𝑗 )  ∈  ℝ  ∧  0  <  ( 2 ↑ 𝑗 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  ≤  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ↔  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  /  ( 2 ↑ 𝑗 ) )  ≤  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 115 | 112 108 87 113 114 | syl112anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  ≤  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ↔  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  /  ( 2 ↑ 𝑗 ) )  ≤  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 116 | 110 115 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  −  1 )  /  ( 2 ↑ 𝑗 ) )  ≤  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 117 | 103 116 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑗 ) )  ≤  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 118 | 1 2 3 4 | mbfi1fseqlem2 | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐺 ‘ 𝑗 )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) ) ) | 
						
							| 119 | 62 118 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝐺 ‘ 𝑗 )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) ) ) | 
						
							| 120 | 119 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) ) ‘ 𝑥 ) ) | 
						
							| 121 |  | ovex | ⊢ ( 𝑗 𝐽 𝑥 )  ∈  V | 
						
							| 122 |  | vex | ⊢ 𝑗  ∈  V | 
						
							| 123 | 121 122 | ifex | ⊢ if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 )  ∈  V | 
						
							| 124 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 125 | 123 124 | ifex | ⊢ if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 )  ∈  V | 
						
							| 126 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) ) | 
						
							| 127 | 126 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 )  ∈  V )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) ) ‘ 𝑥 )  =  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) ) | 
						
							| 128 | 80 125 127 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) ) ‘ 𝑥 )  =  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) ) | 
						
							| 129 | 75 120 128 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  =  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 ) ) | 
						
							| 130 | 10 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( abs ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 131 | 15 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 132 | 62 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 133 | 11 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 134 | 133 12 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 135 | 134 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  0  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 136 | 130 64 | addge01d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 0  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( abs ‘ 𝑥 )  ≤  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 137 | 135 136 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( abs ‘ 𝑥 )  ≤  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 138 | 60 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 139 | 138 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 140 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) | 
						
							| 141 | 131 139 140 | ltled | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  ≤  𝑘 ) | 
						
							| 142 |  | eluzle | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  →  𝑘  ≤  𝑗 ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑘  ≤  𝑗 ) | 
						
							| 144 | 131 139 132 141 143 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  ≤  𝑗 ) | 
						
							| 145 | 130 131 132 137 144 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( abs ‘ 𝑥 )  ≤  𝑗 ) | 
						
							| 146 | 80 132 | absled | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( abs ‘ 𝑥 )  ≤  𝑗  ↔  ( - 𝑗  ≤  𝑥  ∧  𝑥  ≤  𝑗 ) ) ) | 
						
							| 147 | 145 146 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( - 𝑗  ≤  𝑥  ∧  𝑥  ≤  𝑗 ) ) | 
						
							| 148 | 147 | simpld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  - 𝑗  ≤  𝑥 ) | 
						
							| 149 | 147 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑥  ≤  𝑗 ) | 
						
							| 150 | 132 | renegcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  - 𝑗  ∈  ℝ ) | 
						
							| 151 |  | elicc2 | ⊢ ( ( - 𝑗  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 )  ↔  ( 𝑥  ∈  ℝ  ∧  - 𝑗  ≤  𝑥  ∧  𝑥  ≤  𝑗 ) ) ) | 
						
							| 152 | 150 132 151 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 )  ↔  ( 𝑥  ∈  ℝ  ∧  - 𝑗  ≤  𝑥  ∧  𝑥  ≤  𝑗 ) ) ) | 
						
							| 153 | 80 148 149 152 | mpbir3and | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ) | 
						
							| 154 | 153 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  if ( 𝑥  ∈  ( - 𝑗 [,] 𝑗 ) ,  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ,  0 )  =  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 ) ) | 
						
							| 155 |  | simpr | ⊢ ( ( 𝑚  =  𝑗  ∧  𝑦  =  𝑥 )  →  𝑦  =  𝑥 ) | 
						
							| 156 | 155 | fveq2d | ⊢ ( ( 𝑚  =  𝑗  ∧  𝑦  =  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 157 |  | simpl | ⊢ ( ( 𝑚  =  𝑗  ∧  𝑦  =  𝑥 )  →  𝑚  =  𝑗 ) | 
						
							| 158 | 157 | oveq2d | ⊢ ( ( 𝑚  =  𝑗  ∧  𝑦  =  𝑥 )  →  ( 2 ↑ 𝑚 )  =  ( 2 ↑ 𝑗 ) ) | 
						
							| 159 | 156 158 | oveq12d | ⊢ ( ( 𝑚  =  𝑗  ∧  𝑦  =  𝑥 )  →  ( ( 𝐹 ‘ 𝑦 )  ·  ( 2 ↑ 𝑚 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 160 | 159 | fveq2d | ⊢ ( ( 𝑚  =  𝑗  ∧  𝑦  =  𝑥 )  →  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 )  ·  ( 2 ↑ 𝑚 ) ) )  =  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 161 | 160 158 | oveq12d | ⊢ ( ( 𝑚  =  𝑗  ∧  𝑦  =  𝑥 )  →  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 )  ·  ( 2 ↑ 𝑚 ) ) )  /  ( 2 ↑ 𝑚 ) )  =  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 162 |  | ovex | ⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) )  ∈  V | 
						
							| 163 | 161 3 162 | ovmpoa | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑥  ∈  ℝ )  →  ( 𝑗 𝐽 𝑥 )  =  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 164 | 62 80 163 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝑗 𝐽 𝑥 )  =  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 165 | 108 86 | nndivred | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) )  ∈  ℝ ) | 
						
							| 166 |  | flle | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) )  ∈  ℝ  →  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 167 | 99 166 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 168 |  | ledivmul2 | ⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  ( ( 2 ↑ 𝑗 )  ∈  ℝ  ∧  0  <  ( 2 ↑ 𝑗 ) ) )  →  ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 169 | 108 64 87 113 168 | syl112anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 170 | 167 169 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 171 | 9 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 172 | 171 | absge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  0  ≤  ( abs ‘ 𝑥 ) ) | 
						
							| 173 | 64 130 | addge02d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 0  ≤  ( abs ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 )  ≤  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 174 | 172 173 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 175 | 64 131 132 174 144 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑗 ) | 
						
							| 176 | 165 64 132 170 175 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) )  ≤  𝑗 ) | 
						
							| 177 | 164 176 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ) | 
						
							| 178 | 177 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 )  =  ( 𝑗 𝐽 𝑥 ) ) | 
						
							| 179 | 178 164 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  if ( ( 𝑗 𝐽 𝑥 )  ≤  𝑗 ,  ( 𝑗 𝐽 𝑥 ) ,  𝑗 )  =  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 180 | 129 154 179 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  =  ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 2 ↑ 𝑗 ) ) )  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 181 | 117 63 180 | 3brtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( ( 1  /  2 ) ↑ 𝑛 ) ) ) ‘ 𝑗 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) | 
						
							| 182 | 180 170 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 183 | 18 20 57 59 69 82 181 182 | climsqz | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  ( ( abs ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑥 ) )  <  𝑘 ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 184 | 17 183 | rexlimddv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 185 | 184 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 186 | 34 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( - 𝑚 [,] 𝑚 ) ,  if ( ( 𝑚 𝐽 𝑥 )  ≤  𝑚 ,  ( 𝑚 𝐽 𝑥 ) ,  𝑚 ) ,  0 ) ) )  ∈  V | 
						
							| 187 | 4 186 | eqeltri | ⊢ 𝐺  ∈  V | 
						
							| 188 |  | feq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 : ℕ ⟶ dom  ∫1  ↔  𝐺 : ℕ ⟶ dom  ∫1 ) ) | 
						
							| 189 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 190 | 189 | breq2d | ⊢ ( 𝑔  =  𝐺  →  ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ↔  0𝑝  ∘r   ≤  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 191 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ ( 𝑛  +  1 ) )  =  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 192 | 189 191 | breq12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝐺 ‘ 𝑛 )  ∘r   ≤  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 193 | 190 192 | anbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ↔  ( 0𝑝  ∘r   ≤  ( 𝐺 ‘ 𝑛 )  ∧  ( 𝐺 ‘ 𝑛 )  ∘r   ≤  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 194 | 193 | ralbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ↔  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝐺 ‘ 𝑛 )  ∧  ( 𝐺 ‘ 𝑛 )  ∘r   ≤  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 195 | 189 | fveq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 196 | 195 | mpteq2dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 197 | 196 | breq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 198 | 197 | ralbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 199 | 188 194 198 | 3anbi123d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝐺 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝐺 ‘ 𝑛 )  ∧  ( 𝐺 ‘ 𝑛 )  ∘r   ≤  ( 𝐺 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 200 | 187 199 | spcev | ⊢ ( ( 𝐺 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝐺 ‘ 𝑛 )  ∧  ( 𝐺 ‘ 𝑛 )  ∘r   ≤  ( 𝐺 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 201 | 5 7 185 200 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) |