| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismbf |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 2 |
1
|
biimpac |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 3 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 4 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 5 |
3 4
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 6 |
|
fnovrn |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 (,) 𝐶 ) ∈ ran (,) ) |
| 7 |
5 6
|
mp3an1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 (,) 𝐶 ) ∈ ran (,) ) |
| 8 |
|
imaeq2 |
⊢ ( 𝑥 = ( 𝐵 (,) 𝐶 ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ) |
| 9 |
8
|
eleq1d |
⊢ ( 𝑥 = ( 𝐵 (,) 𝐶 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) ) |
| 10 |
9
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ∧ ( 𝐵 (,) 𝐶 ) ∈ ran (,) ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |
| 11 |
2 7 10
|
syl2an |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |
| 12 |
|
ndmioo |
⊢ ( ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 (,) 𝐶 ) = ∅ ) |
| 13 |
12
|
imaeq2d |
⊢ ( ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) = ( ◡ 𝐹 “ ∅ ) ) |
| 14 |
|
ima0 |
⊢ ( ◡ 𝐹 “ ∅ ) = ∅ |
| 15 |
13 14
|
eqtrdi |
⊢ ( ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) = ∅ ) |
| 16 |
|
0mbl |
⊢ ∅ ∈ dom vol |
| 17 |
15 16
|
eqeltrdi |
⊢ ( ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |
| 19 |
11 18
|
pm2.61dan |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |