Metamath Proof Explorer


Theorem mbfimaicc

Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion mbfimaicc ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐹 “ ( 𝐵 [,] 𝐶 ) ) ∈ dom vol )

Proof

Step Hyp Ref Expression
1 iccssre ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ )
2 1 adantl ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ )
3 dfss4 ( ( 𝐵 [,] 𝐶 ) ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) ) = ( 𝐵 [,] 𝐶 ) )
4 2 3 sylib ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ℝ ∖ ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) ) = ( 𝐵 [,] 𝐶 ) )
5 difreicc ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) = ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) )
6 5 adantl ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) = ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) )
7 6 difeq2d ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ℝ ∖ ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) ) = ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) )
8 4 7 eqtr3d ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 [,] 𝐶 ) = ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) )
9 8 imaeq2d ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐹 “ ( 𝐵 [,] 𝐶 ) ) = ( 𝐹 “ ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) )
10 ffun ( 𝐹 : 𝐴 ⟶ ℝ → Fun 𝐹 )
11 funcnvcnv ( Fun 𝐹 → Fun 𝐹 )
12 10 11 syl ( 𝐹 : 𝐴 ⟶ ℝ → Fun 𝐹 )
13 12 ad2antlr ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → Fun 𝐹 )
14 imadif ( Fun 𝐹 → ( 𝐹 “ ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) = ( ( 𝐹 “ ℝ ) ∖ ( 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) )
15 13 14 syl ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐹 “ ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) = ( ( 𝐹 “ ℝ ) ∖ ( 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) )
16 9 15 eqtrd ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐹 “ ( 𝐵 [,] 𝐶 ) ) = ( ( 𝐹 “ ℝ ) ∖ ( 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) )
17 fimacnv ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 “ ℝ ) = 𝐴 )
18 17 adantl ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( 𝐹 “ ℝ ) = 𝐴 )
19 mbfdm ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol )
20 fdm ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 )
21 20 eleq1d ( 𝐹 : 𝐴 ⟶ ℝ → ( dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol ) )
22 21 biimpac ( ( dom 𝐹 ∈ dom vol ∧ 𝐹 : 𝐴 ⟶ ℝ ) → 𝐴 ∈ dom vol )
23 19 22 sylan ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → 𝐴 ∈ dom vol )
24 18 23 eqeltrd ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( 𝐹 “ ℝ ) ∈ dom vol )
25 imaundi ( 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) = ( ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ∪ ( 𝐹 “ ( 𝐶 (,) +∞ ) ) )
26 mbfima ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ dom vol )
27 mbfima ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( 𝐹 “ ( 𝐶 (,) +∞ ) ) ∈ dom vol )
28 unmbl ( ( ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ dom vol ∧ ( 𝐹 “ ( 𝐶 (,) +∞ ) ) ∈ dom vol ) → ( ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ∪ ( 𝐹 “ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol )
29 26 27 28 syl2anc ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ∪ ( 𝐹 “ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol )
30 25 29 eqeltrid ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol )
31 difmbl ( ( ( 𝐹 “ ℝ ) ∈ dom vol ∧ ( 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol ) → ( ( 𝐹 “ ℝ ) ∖ ( 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ∈ dom vol )
32 24 30 31 syl2anc ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ( 𝐹 “ ℝ ) ∖ ( 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ∈ dom vol )
33 32 adantr ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐹 “ ℝ ) ∖ ( 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ∈ dom vol )
34 16 33 eqeltrd ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐹 “ ( 𝐵 [,] 𝐶 ) ) ∈ dom vol )