Step |
Hyp |
Ref |
Expression |
1 |
|
iccssre |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
3 |
|
dfss4 |
⊢ ( ( 𝐵 [,] 𝐶 ) ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) ) = ( 𝐵 [,] 𝐶 ) ) |
4 |
2 3
|
sylib |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ℝ ∖ ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) ) = ( 𝐵 [,] 𝐶 ) ) |
5 |
|
difreicc |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) = ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) = ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) |
7 |
6
|
difeq2d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ℝ ∖ ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) ) = ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) |
8 |
4 7
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 [,] 𝐶 ) = ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) |
9 |
8
|
imaeq2d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐶 ) ) = ( ◡ 𝐹 “ ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ) |
10 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → Fun 𝐹 ) |
11 |
|
funcnvcnv |
⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) |
12 |
10 11
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → Fun ◡ ◡ 𝐹 ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → Fun ◡ ◡ 𝐹 ) |
14 |
|
imadif |
⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ) |
16 |
9 15
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐶 ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ) |
17 |
|
fimacnv |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
18 |
17
|
adantl |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
19 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
20 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 ) |
21 |
20
|
eleq1d |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol ) ) |
22 |
21
|
biimpac |
⊢ ( ( dom 𝐹 ∈ dom vol ∧ 𝐹 : 𝐴 ⟶ ℝ ) → 𝐴 ∈ dom vol ) |
23 |
19 22
|
sylan |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → 𝐴 ∈ dom vol ) |
24 |
18 23
|
eqeltrd |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
25 |
|
imaundi |
⊢ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∪ ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ) |
26 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ dom vol ) |
27 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ∈ dom vol ) |
28 |
|
unmbl |
⊢ ( ( ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∪ ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol ) |
29 |
26 27 28
|
syl2anc |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∪ ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol ) |
30 |
25 29
|
eqeltrid |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol ) |
31 |
|
difmbl |
⊢ ( ( ( ◡ 𝐹 “ ℝ ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ∈ dom vol ) |
32 |
24 30 31
|
syl2anc |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ∈ dom vol ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ∈ dom vol ) |
34 |
16 33
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐶 ) ) ∈ dom vol ) |