| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfimaopn.1 | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑡  =  𝑥  →  ( 𝑡  +  ( i  ·  𝑤 ) )  =  ( 𝑥  +  ( i  ·  𝑤 ) ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑤  =  𝑦  →  ( i  ·  𝑤 )  =  ( i  ·  𝑦 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  +  ( i  ·  𝑤 ) )  =  ( 𝑥  +  ( i  ·  𝑦 ) ) ) | 
						
							| 5 | 2 4 | cbvmpov | ⊢ ( 𝑡  ∈  ℝ ,  𝑤  ∈  ℝ  ↦  ( 𝑡  +  ( i  ·  𝑤 ) ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  ( i  ·  𝑦 ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  =  ( (,)  “  ( ℚ  ×  ℚ ) ) | 
						
							| 7 |  | eqid | ⊢ ran  ( 𝑥  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ,  𝑦  ∈  ( (,)  “  ( ℚ  ×  ℚ ) )  ↦  ( 𝑥  ×  𝑦 ) )  =  ran  ( 𝑥  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ,  𝑦  ∈  ( (,)  “  ( ℚ  ×  ℚ ) )  ↦  ( 𝑥  ×  𝑦 ) ) | 
						
							| 8 | 1 5 6 7 | mbfimaopnlem | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  →  ( ◡ 𝐹  “  𝐴 )  ∈  dom  vol ) |