Metamath Proof Explorer


Theorem mbfimaopn2

Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses mbfimaopn.1 𝐽 = ( TopOpen ‘ ℂfld )
mbfimaopn2.2 𝐾 = ( 𝐽t 𝐵 )
Assertion mbfimaopn2 ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝐶𝐾 ) → ( 𝐹𝐶 ) ∈ dom vol )

Proof

Step Hyp Ref Expression
1 mbfimaopn.1 𝐽 = ( TopOpen ‘ ℂfld )
2 mbfimaopn2.2 𝐾 = ( 𝐽t 𝐵 )
3 2 eleq2i ( 𝐶𝐾𝐶 ∈ ( 𝐽t 𝐵 ) )
4 1 cnfldtop 𝐽 ∈ Top
5 simp3 ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) → 𝐵 ⊆ ℂ )
6 cnex ℂ ∈ V
7 ssexg ( ( 𝐵 ⊆ ℂ ∧ ℂ ∈ V ) → 𝐵 ∈ V )
8 5 6 7 sylancl ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) → 𝐵 ∈ V )
9 elrest ( ( 𝐽 ∈ Top ∧ 𝐵 ∈ V ) → ( 𝐶 ∈ ( 𝐽t 𝐵 ) ↔ ∃ 𝑢𝐽 𝐶 = ( 𝑢𝐵 ) ) )
10 4 8 9 sylancr ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) → ( 𝐶 ∈ ( 𝐽t 𝐵 ) ↔ ∃ 𝑢𝐽 𝐶 = ( 𝑢𝐵 ) ) )
11 3 10 syl5bb ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) → ( 𝐶𝐾 ↔ ∃ 𝑢𝐽 𝐶 = ( 𝑢𝐵 ) ) )
12 simpl2 ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → 𝐹 : 𝐴𝐵 )
13 ffun ( 𝐹 : 𝐴𝐵 → Fun 𝐹 )
14 inpreima ( Fun 𝐹 → ( 𝐹 “ ( 𝑢𝐵 ) ) = ( ( 𝐹𝑢 ) ∩ ( 𝐹𝐵 ) ) )
15 12 13 14 3syl ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → ( 𝐹 “ ( 𝑢𝐵 ) ) = ( ( 𝐹𝑢 ) ∩ ( 𝐹𝐵 ) ) )
16 1 mbfimaopn ( ( 𝐹 ∈ MblFn ∧ 𝑢𝐽 ) → ( 𝐹𝑢 ) ∈ dom vol )
17 16 3ad2antl1 ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → ( 𝐹𝑢 ) ∈ dom vol )
18 fimacnv ( 𝐹 : 𝐴𝐵 → ( 𝐹𝐵 ) = 𝐴 )
19 fdm ( 𝐹 : 𝐴𝐵 → dom 𝐹 = 𝐴 )
20 18 19 eqtr4d ( 𝐹 : 𝐴𝐵 → ( 𝐹𝐵 ) = dom 𝐹 )
21 12 20 syl ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → ( 𝐹𝐵 ) = dom 𝐹 )
22 simpl1 ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → 𝐹 ∈ MblFn )
23 mbfdm ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol )
24 22 23 syl ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → dom 𝐹 ∈ dom vol )
25 21 24 eqeltrd ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → ( 𝐹𝐵 ) ∈ dom vol )
26 inmbl ( ( ( 𝐹𝑢 ) ∈ dom vol ∧ ( 𝐹𝐵 ) ∈ dom vol ) → ( ( 𝐹𝑢 ) ∩ ( 𝐹𝐵 ) ) ∈ dom vol )
27 17 25 26 syl2anc ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → ( ( 𝐹𝑢 ) ∩ ( 𝐹𝐵 ) ) ∈ dom vol )
28 15 27 eqeltrd ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → ( 𝐹 “ ( 𝑢𝐵 ) ) ∈ dom vol )
29 imaeq2 ( 𝐶 = ( 𝑢𝐵 ) → ( 𝐹𝐶 ) = ( 𝐹 “ ( 𝑢𝐵 ) ) )
30 29 eleq1d ( 𝐶 = ( 𝑢𝐵 ) → ( ( 𝐹𝐶 ) ∈ dom vol ↔ ( 𝐹 “ ( 𝑢𝐵 ) ) ∈ dom vol ) )
31 28 30 syl5ibrcom ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝑢𝐽 ) → ( 𝐶 = ( 𝑢𝐵 ) → ( 𝐹𝐶 ) ∈ dom vol ) )
32 31 rexlimdva ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) → ( ∃ 𝑢𝐽 𝐶 = ( 𝑢𝐵 ) → ( 𝐹𝐶 ) ∈ dom vol ) )
33 11 32 sylbid ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) → ( 𝐶𝐾 → ( 𝐹𝐶 ) ∈ dom vol ) )
34 33 imp ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴𝐵𝐵 ⊆ ℂ ) ∧ 𝐶𝐾 ) → ( 𝐹𝐶 ) ∈ dom vol )