| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfimaopn.1 | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 |  | mbfimaopn2.2 | ⊢ 𝐾  =  ( 𝐽  ↾t  𝐵 ) | 
						
							| 3 | 2 | eleq2i | ⊢ ( 𝐶  ∈  𝐾  ↔  𝐶  ∈  ( 𝐽  ↾t  𝐵 ) ) | 
						
							| 4 | 1 | cnfldtop | ⊢ 𝐽  ∈  Top | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  →  𝐵  ⊆  ℂ ) | 
						
							| 6 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 7 |  | ssexg | ⊢ ( ( 𝐵  ⊆  ℂ  ∧  ℂ  ∈  V )  →  𝐵  ∈  V ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  →  𝐵  ∈  V ) | 
						
							| 9 |  | elrest | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐵  ∈  V )  →  ( 𝐶  ∈  ( 𝐽  ↾t  𝐵 )  ↔  ∃ 𝑢  ∈  𝐽 𝐶  =  ( 𝑢  ∩  𝐵 ) ) ) | 
						
							| 10 | 4 8 9 | sylancr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  →  ( 𝐶  ∈  ( 𝐽  ↾t  𝐵 )  ↔  ∃ 𝑢  ∈  𝐽 𝐶  =  ( 𝑢  ∩  𝐵 ) ) ) | 
						
							| 11 | 3 10 | bitrid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  →  ( 𝐶  ∈  𝐾  ↔  ∃ 𝑢  ∈  𝐽 𝐶  =  ( 𝑢  ∩  𝐵 ) ) ) | 
						
							| 12 |  | simpl2 | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 13 |  | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  Fun  𝐹 ) | 
						
							| 14 |  | inpreima | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝐵 ) )  =  ( ( ◡ 𝐹  “  𝑢 )  ∩  ( ◡ 𝐹  “  𝐵 ) ) ) | 
						
							| 15 | 12 13 14 | 3syl | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝐵 ) )  =  ( ( ◡ 𝐹  “  𝑢 )  ∩  ( ◡ 𝐹  “  𝐵 ) ) ) | 
						
							| 16 | 1 | mbfimaopn | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝑢  ∈  𝐽 )  →  ( ◡ 𝐹  “  𝑢 )  ∈  dom  vol ) | 
						
							| 17 | 16 | 3ad2antl1 | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  ( ◡ 𝐹  “  𝑢 )  ∈  dom  vol ) | 
						
							| 18 |  | fimacnv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ◡ 𝐹  “  𝐵 )  =  𝐴 ) | 
						
							| 19 |  | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  dom  𝐹  =  𝐴 ) | 
						
							| 20 | 18 19 | eqtr4d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ◡ 𝐹  “  𝐵 )  =  dom  𝐹 ) | 
						
							| 21 | 12 20 | syl | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  ( ◡ 𝐹  “  𝐵 )  =  dom  𝐹 ) | 
						
							| 22 |  | simpl1 | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  𝐹  ∈  MblFn ) | 
						
							| 23 |  | mbfdm | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 25 | 21 24 | eqeltrd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  ( ◡ 𝐹  “  𝐵 )  ∈  dom  vol ) | 
						
							| 26 |  | inmbl | ⊢ ( ( ( ◡ 𝐹  “  𝑢 )  ∈  dom  vol  ∧  ( ◡ 𝐹  “  𝐵 )  ∈  dom  vol )  →  ( ( ◡ 𝐹  “  𝑢 )  ∩  ( ◡ 𝐹  “  𝐵 ) )  ∈  dom  vol ) | 
						
							| 27 | 17 25 26 | syl2anc | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  ( ( ◡ 𝐹  “  𝑢 )  ∩  ( ◡ 𝐹  “  𝐵 ) )  ∈  dom  vol ) | 
						
							| 28 | 15 27 | eqeltrd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝐵 ) )  ∈  dom  vol ) | 
						
							| 29 |  | imaeq2 | ⊢ ( 𝐶  =  ( 𝑢  ∩  𝐵 )  →  ( ◡ 𝐹  “  𝐶 )  =  ( ◡ 𝐹  “  ( 𝑢  ∩  𝐵 ) ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝐶  =  ( 𝑢  ∩  𝐵 )  →  ( ( ◡ 𝐹  “  𝐶 )  ∈  dom  vol  ↔  ( ◡ 𝐹  “  ( 𝑢  ∩  𝐵 ) )  ∈  dom  vol ) ) | 
						
							| 31 | 28 30 | syl5ibrcom | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝑢  ∈  𝐽 )  →  ( 𝐶  =  ( 𝑢  ∩  𝐵 )  →  ( ◡ 𝐹  “  𝐶 )  ∈  dom  vol ) ) | 
						
							| 32 | 31 | rexlimdva | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  →  ( ∃ 𝑢  ∈  𝐽 𝐶  =  ( 𝑢  ∩  𝐵 )  →  ( ◡ 𝐹  “  𝐶 )  ∈  dom  vol ) ) | 
						
							| 33 | 11 32 | sylbid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  →  ( 𝐶  ∈  𝐾  →  ( ◡ 𝐹  “  𝐶 )  ∈  dom  vol ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  𝐶  ∈  𝐾 )  →  ( ◡ 𝐹  “  𝐶 )  ∈  dom  vol ) |