Step |
Hyp |
Ref |
Expression |
1 |
|
mbfimaopn.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
mbfimaopn.2 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) |
3 |
|
mbfimaopn.3 |
⊢ 𝐵 = ( (,) “ ( ℚ × ℚ ) ) |
4 |
|
mbfimaopn.4 |
⊢ 𝐾 = ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) |
5 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
6 |
2 5 1
|
cnrehmeo |
⊢ 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Homeo 𝐽 ) |
7 |
|
hmeocn |
⊢ ( 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Homeo 𝐽 ) → 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) ) |
8 |
6 7
|
ax-mp |
⊢ 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) |
9 |
|
cnima |
⊢ ( ( 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) ∧ 𝐴 ∈ 𝐽 ) → ( ◡ 𝐺 “ 𝐴 ) ∈ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ) |
10 |
8 9
|
mpan |
⊢ ( 𝐴 ∈ 𝐽 → ( ◡ 𝐺 “ 𝐴 ) ∈ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ) |
11 |
3
|
fveq2i |
⊢ ( topGen ‘ 𝐵 ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
12 |
11
|
tgqioo |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ 𝐵 ) |
13 |
12 12
|
oveq12i |
⊢ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) = ( ( topGen ‘ 𝐵 ) ×t ( topGen ‘ 𝐵 ) ) |
14 |
|
qtopbas |
⊢ ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases |
15 |
3 14
|
eqeltri |
⊢ 𝐵 ∈ TopBases |
16 |
|
txbasval |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases ) → ( ( topGen ‘ 𝐵 ) ×t ( topGen ‘ 𝐵 ) ) = ( 𝐵 ×t 𝐵 ) ) |
17 |
15 15 16
|
mp2an |
⊢ ( ( topGen ‘ 𝐵 ) ×t ( topGen ‘ 𝐵 ) ) = ( 𝐵 ×t 𝐵 ) |
18 |
4
|
txval |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases ) → ( 𝐵 ×t 𝐵 ) = ( topGen ‘ 𝐾 ) ) |
19 |
15 15 18
|
mp2an |
⊢ ( 𝐵 ×t 𝐵 ) = ( topGen ‘ 𝐾 ) |
20 |
13 17 19
|
3eqtri |
⊢ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) = ( topGen ‘ 𝐾 ) |
21 |
10 20
|
eleqtrdi |
⊢ ( 𝐴 ∈ 𝐽 → ( ◡ 𝐺 “ 𝐴 ) ∈ ( topGen ‘ 𝐾 ) ) |
22 |
4
|
txbas |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases ) → 𝐾 ∈ TopBases ) |
23 |
15 15 22
|
mp2an |
⊢ 𝐾 ∈ TopBases |
24 |
|
eltg3 |
⊢ ( 𝐾 ∈ TopBases → ( ( ◡ 𝐺 “ 𝐴 ) ∈ ( topGen ‘ 𝐾 ) ↔ ∃ 𝑡 ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) ) |
25 |
23 24
|
ax-mp |
⊢ ( ( ◡ 𝐺 “ 𝐴 ) ∈ ( topGen ‘ 𝐾 ) ↔ ∃ 𝑡 ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) |
26 |
21 25
|
sylib |
⊢ ( 𝐴 ∈ 𝐽 → ∃ 𝑡 ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) → ∃ 𝑡 ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) |
28 |
2
|
cnref1o |
⊢ 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ |
29 |
|
f1ofo |
⊢ ( 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ → 𝐺 : ( ℝ × ℝ ) –onto→ ℂ ) |
30 |
28 29
|
ax-mp |
⊢ 𝐺 : ( ℝ × ℝ ) –onto→ ℂ |
31 |
|
elssuni |
⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) |
32 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
33 |
32
|
toponunii |
⊢ ℂ = ∪ 𝐽 |
34 |
31 33
|
sseqtrrdi |
⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ℂ ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → 𝐴 ⊆ ℂ ) |
36 |
|
foimacnv |
⊢ ( ( 𝐺 : ( ℝ × ℝ ) –onto→ ℂ ∧ 𝐴 ⊆ ℂ ) → ( 𝐺 “ ( ◡ 𝐺 “ 𝐴 ) ) = 𝐴 ) |
37 |
30 35 36
|
sylancr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ 𝐴 ) ) = 𝐴 ) |
38 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) |
39 |
38
|
imaeq2d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ 𝐴 ) ) = ( 𝐺 “ ∪ 𝑡 ) ) |
40 |
|
imauni |
⊢ ( 𝐺 “ ∪ 𝑡 ) = ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) |
41 |
39 40
|
eqtrdi |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ 𝐴 ) ) = ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) ) |
42 |
37 41
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → 𝐴 = ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) ) |
43 |
42
|
imaeq2d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( ◡ 𝐹 “ 𝐴 ) = ( ◡ 𝐹 “ ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) ) ) |
44 |
|
imaiun |
⊢ ( ◡ 𝐹 “ ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) ) = ∪ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) |
45 |
43 44
|
eqtrdi |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( ◡ 𝐹 “ 𝐴 ) = ∪ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ) |
46 |
|
ssdomg |
⊢ ( 𝐾 ∈ TopBases → ( 𝑡 ⊆ 𝐾 → 𝑡 ≼ 𝐾 ) ) |
47 |
23 46
|
ax-mp |
⊢ ( 𝑡 ⊆ 𝐾 → 𝑡 ≼ 𝐾 ) |
48 |
|
omelon |
⊢ ω ∈ On |
49 |
|
nnenom |
⊢ ℕ ≈ ω |
50 |
49
|
ensymi |
⊢ ω ≈ ℕ |
51 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ℕ ) → ℕ ∈ dom card ) |
52 |
48 50 51
|
mp2an |
⊢ ℕ ∈ dom card |
53 |
|
qnnen |
⊢ ℚ ≈ ℕ |
54 |
|
xpen |
⊢ ( ( ℚ ≈ ℕ ∧ ℚ ≈ ℕ ) → ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) ) |
55 |
53 53 54
|
mp2an |
⊢ ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) |
56 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
57 |
55 56
|
entri |
⊢ ( ℚ × ℚ ) ≈ ℕ |
58 |
57 49
|
entr2i |
⊢ ω ≈ ( ℚ × ℚ ) |
59 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ( ℚ × ℚ ) ) → ( ℚ × ℚ ) ∈ dom card ) |
60 |
48 58 59
|
mp2an |
⊢ ( ℚ × ℚ ) ∈ dom card |
61 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
62 |
|
ffun |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) |
63 |
61 62
|
ax-mp |
⊢ Fun (,) |
64 |
|
qssre |
⊢ ℚ ⊆ ℝ |
65 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
66 |
64 65
|
sstri |
⊢ ℚ ⊆ ℝ* |
67 |
|
xpss12 |
⊢ ( ( ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ* ) → ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) ) |
68 |
66 66 67
|
mp2an |
⊢ ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) |
69 |
61
|
fdmi |
⊢ dom (,) = ( ℝ* × ℝ* ) |
70 |
68 69
|
sseqtrri |
⊢ ( ℚ × ℚ ) ⊆ dom (,) |
71 |
|
fores |
⊢ ( ( Fun (,) ∧ ( ℚ × ℚ ) ⊆ dom (,) ) → ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) ) |
72 |
63 70 71
|
mp2an |
⊢ ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) |
73 |
|
fodomnum |
⊢ ( ( ℚ × ℚ ) ∈ dom card → ( ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ) ) |
74 |
60 72 73
|
mp2 |
⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) |
75 |
3 74
|
eqbrtri |
⊢ 𝐵 ≼ ( ℚ × ℚ ) |
76 |
|
domentr |
⊢ ( ( 𝐵 ≼ ( ℚ × ℚ ) ∧ ( ℚ × ℚ ) ≈ ℕ ) → 𝐵 ≼ ℕ ) |
77 |
75 57 76
|
mp2an |
⊢ 𝐵 ≼ ℕ |
78 |
15
|
elexi |
⊢ 𝐵 ∈ V |
79 |
78
|
xpdom1 |
⊢ ( 𝐵 ≼ ℕ → ( 𝐵 × 𝐵 ) ≼ ( ℕ × 𝐵 ) ) |
80 |
77 79
|
ax-mp |
⊢ ( 𝐵 × 𝐵 ) ≼ ( ℕ × 𝐵 ) |
81 |
|
nnex |
⊢ ℕ ∈ V |
82 |
81
|
xpdom2 |
⊢ ( 𝐵 ≼ ℕ → ( ℕ × 𝐵 ) ≼ ( ℕ × ℕ ) ) |
83 |
77 82
|
ax-mp |
⊢ ( ℕ × 𝐵 ) ≼ ( ℕ × ℕ ) |
84 |
|
domtr |
⊢ ( ( ( 𝐵 × 𝐵 ) ≼ ( ℕ × 𝐵 ) ∧ ( ℕ × 𝐵 ) ≼ ( ℕ × ℕ ) ) → ( 𝐵 × 𝐵 ) ≼ ( ℕ × ℕ ) ) |
85 |
80 83 84
|
mp2an |
⊢ ( 𝐵 × 𝐵 ) ≼ ( ℕ × ℕ ) |
86 |
|
domentr |
⊢ ( ( ( 𝐵 × 𝐵 ) ≼ ( ℕ × ℕ ) ∧ ( ℕ × ℕ ) ≈ ℕ ) → ( 𝐵 × 𝐵 ) ≼ ℕ ) |
87 |
85 56 86
|
mp2an |
⊢ ( 𝐵 × 𝐵 ) ≼ ℕ |
88 |
|
numdom |
⊢ ( ( ℕ ∈ dom card ∧ ( 𝐵 × 𝐵 ) ≼ ℕ ) → ( 𝐵 × 𝐵 ) ∈ dom card ) |
89 |
52 87 88
|
mp2an |
⊢ ( 𝐵 × 𝐵 ) ∈ dom card |
90 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) |
91 |
|
vex |
⊢ 𝑥 ∈ V |
92 |
|
vex |
⊢ 𝑦 ∈ V |
93 |
91 92
|
xpex |
⊢ ( 𝑥 × 𝑦 ) ∈ V |
94 |
90 93
|
fnmpoi |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝐵 × 𝐵 ) |
95 |
|
dffn4 |
⊢ ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝐵 × 𝐵 ) –onto→ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ) |
96 |
94 95
|
mpbi |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝐵 × 𝐵 ) –onto→ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) |
97 |
|
fodomnum |
⊢ ( ( 𝐵 × 𝐵 ) ∈ dom card → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝐵 × 𝐵 ) –onto→ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) → ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝐵 × 𝐵 ) ) ) |
98 |
89 96 97
|
mp2 |
⊢ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝐵 × 𝐵 ) |
99 |
|
domtr |
⊢ ( ( ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝐵 × 𝐵 ) ∧ ( 𝐵 × 𝐵 ) ≼ ℕ ) → ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ℕ ) |
100 |
98 87 99
|
mp2an |
⊢ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ℕ |
101 |
4 100
|
eqbrtri |
⊢ 𝐾 ≼ ℕ |
102 |
|
domtr |
⊢ ( ( 𝑡 ≼ 𝐾 ∧ 𝐾 ≼ ℕ ) → 𝑡 ≼ ℕ ) |
103 |
47 101 102
|
sylancl |
⊢ ( 𝑡 ⊆ 𝐾 → 𝑡 ≼ ℕ ) |
104 |
103
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → 𝑡 ≼ ℕ ) |
105 |
4
|
eleq2i |
⊢ ( 𝑤 ∈ 𝐾 ↔ 𝑤 ∈ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ) |
106 |
90 93
|
elrnmpo |
⊢ ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑤 = ( 𝑥 × 𝑦 ) ) |
107 |
105 106
|
bitri |
⊢ ( 𝑤 ∈ 𝐾 ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑤 = ( 𝑥 × 𝑦 ) ) |
108 |
|
elin |
⊢ ( 𝑧 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ) |
109 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
110 |
109
|
adantr |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
111 |
|
fvco3 |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
112 |
110 111
|
sylan |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
113 |
112
|
eleq1d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ↔ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑥 ) ) |
114 |
|
fvco3 |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
115 |
110 114
|
sylan |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
116 |
115
|
eleq1d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑦 ) ) |
117 |
113 116
|
anbi12d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ↔ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑥 ∧ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑦 ) ) ) |
118 |
110
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
119 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( ℜ ‘ 𝑤 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
120 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( ℑ ‘ 𝑤 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
121 |
119 120
|
opeq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → 〈 ( ℜ ‘ 𝑤 ) , ( ℑ ‘ 𝑤 ) 〉 = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ) |
122 |
2
|
cnrecnv |
⊢ ◡ 𝐺 = ( 𝑤 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑤 ) , ( ℑ ‘ 𝑤 ) 〉 ) |
123 |
|
opex |
⊢ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ∈ V |
124 |
121 122 123
|
fvmpt |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ → ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ) |
125 |
118 124
|
syl |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ) |
126 |
125
|
eleq1d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ↔ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ∈ ( 𝑥 × 𝑦 ) ) ) |
127 |
118
|
biantrurd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ) ) |
128 |
126 127
|
bitr3d |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ∈ ( 𝑥 × 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ) ) |
129 |
|
opelxp |
⊢ ( 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ∈ ( 𝑥 × 𝑦 ) ↔ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑥 ∧ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑦 ) ) |
130 |
|
f1ocnv |
⊢ ( 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ → ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ × ℝ ) ) |
131 |
|
f1ofn |
⊢ ( ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ × ℝ ) → ◡ 𝐺 Fn ℂ ) |
132 |
28 130 131
|
mp2b |
⊢ ◡ 𝐺 Fn ℂ |
133 |
|
elpreima |
⊢ ( ◡ 𝐺 Fn ℂ → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ◡ ◡ 𝐺 “ ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ) ) |
134 |
132 133
|
ax-mp |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ◡ ◡ 𝐺 “ ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ) |
135 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐺 “ ( 𝑥 × 𝑦 ) ) = ( 𝐺 “ ( 𝑥 × 𝑦 ) ) |
136 |
135
|
eleq2i |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ◡ ◡ 𝐺 “ ( 𝑥 × 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) |
137 |
134 136
|
bitr3i |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) |
138 |
128 129 137
|
3bitr3g |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑥 ∧ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) |
139 |
117 138
|
bitrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) |
140 |
139
|
pm5.32da |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 ∈ dom 𝐹 ∧ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
141 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
142 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
143 |
141 109 142
|
sylancr |
⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
144 |
|
ffn |
⊢ ( ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ℜ ∘ 𝐹 ) Fn dom 𝐹 ) |
145 |
|
elpreima |
⊢ ( ( ℜ ∘ 𝐹 ) Fn dom 𝐹 → ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
146 |
143 144 145
|
3syl |
⊢ ( 𝐹 ∈ MblFn → ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
147 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
148 |
|
fco |
⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
149 |
147 109 148
|
sylancr |
⊢ ( 𝐹 ∈ MblFn → ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
150 |
|
ffn |
⊢ ( ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ℑ ∘ 𝐹 ) Fn dom 𝐹 ) |
151 |
|
elpreima |
⊢ ( ( ℑ ∘ 𝐹 ) Fn dom 𝐹 → ( 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
152 |
149 150 151
|
3syl |
⊢ ( 𝐹 ∈ MblFn → ( 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
153 |
146 152
|
anbi12d |
⊢ ( 𝐹 ∈ MblFn → ( ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ ( ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) ) |
154 |
|
anandi |
⊢ ( ( 𝑧 ∈ dom 𝐹 ∧ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ↔ ( ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
155 |
153 154
|
bitr4di |
⊢ ( 𝐹 ∈ MblFn → ( ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) ) |
156 |
155
|
adantr |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) ) |
157 |
|
ffn |
⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → 𝐹 Fn dom 𝐹 ) |
158 |
|
elpreima |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
159 |
109 157 158
|
3syl |
⊢ ( 𝐹 ∈ MblFn → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
160 |
159
|
adantr |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
161 |
140 156 160
|
3bitr4d |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
162 |
108 161
|
syl5bb |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
163 |
162
|
eqrdv |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) = ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) |
164 |
|
ismbfcn |
⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
165 |
109 164
|
syl |
⊢ ( 𝐹 ∈ MblFn → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
166 |
165
|
ibi |
⊢ ( 𝐹 ∈ MblFn → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) |
167 |
166
|
simpld |
⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) ∈ MblFn ) |
168 |
|
ismbf |
⊢ ( ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
169 |
143 168
|
syl |
⊢ ( 𝐹 ∈ MblFn → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
170 |
167 169
|
mpbid |
⊢ ( 𝐹 ∈ MblFn → ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
171 |
170
|
adantr |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
172 |
|
imassrn |
⊢ ( (,) “ ( ℚ × ℚ ) ) ⊆ ran (,) |
173 |
3 172
|
eqsstri |
⊢ 𝐵 ⊆ ran (,) |
174 |
|
simprl |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
175 |
173 174
|
sselid |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ran (,) ) |
176 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol → ( 𝑥 ∈ ran (,) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
177 |
171 175 176
|
sylc |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
178 |
166
|
simprd |
⊢ ( 𝐹 ∈ MblFn → ( ℑ ∘ 𝐹 ) ∈ MblFn ) |
179 |
|
ismbf |
⊢ ( ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ( ℑ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) ) |
180 |
149 179
|
syl |
⊢ ( 𝐹 ∈ MblFn → ( ( ℑ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) ) |
181 |
178 180
|
mpbid |
⊢ ( 𝐹 ∈ MblFn → ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) |
182 |
181
|
adantr |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) |
183 |
|
simprr |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
184 |
173 183
|
sselid |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ran (,) ) |
185 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol → ( 𝑦 ∈ ran (,) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) ) |
186 |
182 184 185
|
sylc |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) |
187 |
|
inmbl |
⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ∈ dom vol ) |
188 |
177 186 187
|
syl2anc |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ∈ dom vol ) |
189 |
163 188
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ∈ dom vol ) |
190 |
|
imaeq2 |
⊢ ( 𝑤 = ( 𝑥 × 𝑦 ) → ( 𝐺 “ 𝑤 ) = ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) |
191 |
190
|
imaeq2d |
⊢ ( 𝑤 = ( 𝑥 × 𝑦 ) → ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) = ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) |
192 |
191
|
eleq1d |
⊢ ( 𝑤 = ( 𝑥 × 𝑦 ) → ( ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ∈ dom vol ) ) |
193 |
189 192
|
syl5ibrcom |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑤 = ( 𝑥 × 𝑦 ) → ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) ) |
194 |
193
|
rexlimdvva |
⊢ ( 𝐹 ∈ MblFn → ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑤 = ( 𝑥 × 𝑦 ) → ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) ) |
195 |
107 194
|
syl5bi |
⊢ ( 𝐹 ∈ MblFn → ( 𝑤 ∈ 𝐾 → ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) ) |
196 |
195
|
ralrimiv |
⊢ ( 𝐹 ∈ MblFn → ∀ 𝑤 ∈ 𝐾 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) |
197 |
|
ssralv |
⊢ ( 𝑡 ⊆ 𝐾 → ( ∀ 𝑤 ∈ 𝐾 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol → ∀ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) ) |
198 |
196 197
|
mpan9 |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝑡 ⊆ 𝐾 ) → ∀ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) |
199 |
198
|
ad2ant2r |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ∀ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) |
200 |
|
iunmbl2 |
⊢ ( ( 𝑡 ≼ ℕ ∧ ∀ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) → ∪ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) |
201 |
104 199 200
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ∪ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) |
202 |
45 201
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) |
203 |
27 202
|
exlimddv |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) |