| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfimaopn.1 | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 |  | mbfimaopn.2 | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  ( i  ·  𝑦 ) ) ) | 
						
							| 3 |  | mbfimaopn.3 | ⊢ 𝐵  =  ( (,)  “  ( ℚ  ×  ℚ ) ) | 
						
							| 4 |  | mbfimaopn.4 | ⊢ 𝐾  =  ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) ) | 
						
							| 5 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 6 | 2 5 1 | cnrehmeo | ⊢ 𝐺  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) ) Homeo 𝐽 ) | 
						
							| 7 |  | hmeocn | ⊢ ( 𝐺  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) ) Homeo 𝐽 )  →  𝐺  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  Cn  𝐽 ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ 𝐺  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  Cn  𝐽 ) | 
						
							| 9 |  | cnima | ⊢ ( ( 𝐺  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  Cn  𝐽 )  ∧  𝐴  ∈  𝐽 )  →  ( ◡ 𝐺  “  𝐴 )  ∈  ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 10 | 8 9 | mpan | ⊢ ( 𝐴  ∈  𝐽  →  ( ◡ 𝐺  “  𝐴 )  ∈  ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 11 | 3 | fveq2i | ⊢ ( topGen ‘ 𝐵 )  =  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 12 | 11 | tgqioo | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ 𝐵 ) | 
						
							| 13 | 12 12 | oveq12i | ⊢ ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  =  ( ( topGen ‘ 𝐵 )  ×t  ( topGen ‘ 𝐵 ) ) | 
						
							| 14 |  | qtopbas | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ∈  TopBases | 
						
							| 15 | 3 14 | eqeltri | ⊢ 𝐵  ∈  TopBases | 
						
							| 16 |  | txbasval | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝐵  ∈  TopBases )  →  ( ( topGen ‘ 𝐵 )  ×t  ( topGen ‘ 𝐵 ) )  =  ( 𝐵  ×t  𝐵 ) ) | 
						
							| 17 | 15 15 16 | mp2an | ⊢ ( ( topGen ‘ 𝐵 )  ×t  ( topGen ‘ 𝐵 ) )  =  ( 𝐵  ×t  𝐵 ) | 
						
							| 18 | 4 | txval | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝐵  ∈  TopBases )  →  ( 𝐵  ×t  𝐵 )  =  ( topGen ‘ 𝐾 ) ) | 
						
							| 19 | 15 15 18 | mp2an | ⊢ ( 𝐵  ×t  𝐵 )  =  ( topGen ‘ 𝐾 ) | 
						
							| 20 | 13 17 19 | 3eqtri | ⊢ ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  =  ( topGen ‘ 𝐾 ) | 
						
							| 21 | 10 20 | eleqtrdi | ⊢ ( 𝐴  ∈  𝐽  →  ( ◡ 𝐺  “  𝐴 )  ∈  ( topGen ‘ 𝐾 ) ) | 
						
							| 22 | 4 | txbas | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝐵  ∈  TopBases )  →  𝐾  ∈  TopBases ) | 
						
							| 23 | 15 15 22 | mp2an | ⊢ 𝐾  ∈  TopBases | 
						
							| 24 |  | eltg3 | ⊢ ( 𝐾  ∈  TopBases  →  ( ( ◡ 𝐺  “  𝐴 )  ∈  ( topGen ‘ 𝐾 )  ↔  ∃ 𝑡 ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) ) ) | 
						
							| 25 | 23 24 | ax-mp | ⊢ ( ( ◡ 𝐺  “  𝐴 )  ∈  ( topGen ‘ 𝐾 )  ↔  ∃ 𝑡 ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) ) | 
						
							| 26 | 21 25 | sylib | ⊢ ( 𝐴  ∈  𝐽  →  ∃ 𝑡 ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  →  ∃ 𝑡 ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) ) | 
						
							| 28 | 2 | cnref1o | ⊢ 𝐺 : ( ℝ  ×  ℝ ) –1-1-onto→ ℂ | 
						
							| 29 |  | f1ofo | ⊢ ( 𝐺 : ( ℝ  ×  ℝ ) –1-1-onto→ ℂ  →  𝐺 : ( ℝ  ×  ℝ ) –onto→ ℂ ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ 𝐺 : ( ℝ  ×  ℝ ) –onto→ ℂ | 
						
							| 31 |  | elssuni | ⊢ ( 𝐴  ∈  𝐽  →  𝐴  ⊆  ∪  𝐽 ) | 
						
							| 32 | 1 | cnfldtopon | ⊢ 𝐽  ∈  ( TopOn ‘ ℂ ) | 
						
							| 33 | 32 | toponunii | ⊢ ℂ  =  ∪  𝐽 | 
						
							| 34 | 31 33 | sseqtrrdi | ⊢ ( 𝐴  ∈  𝐽  →  𝐴  ⊆  ℂ ) | 
						
							| 35 | 34 | ad2antlr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  𝐴  ⊆  ℂ ) | 
						
							| 36 |  | foimacnv | ⊢ ( ( 𝐺 : ( ℝ  ×  ℝ ) –onto→ ℂ  ∧  𝐴  ⊆  ℂ )  →  ( 𝐺  “  ( ◡ 𝐺  “  𝐴 ) )  =  𝐴 ) | 
						
							| 37 | 30 35 36 | sylancr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  𝐴 ) )  =  𝐴 ) | 
						
							| 38 |  | simprr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) | 
						
							| 39 | 38 | imaeq2d | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  𝐴 ) )  =  ( 𝐺  “  ∪  𝑡 ) ) | 
						
							| 40 |  | imauni | ⊢ ( 𝐺  “  ∪  𝑡 )  =  ∪  𝑤  ∈  𝑡 ( 𝐺  “  𝑤 ) | 
						
							| 41 | 39 40 | eqtrdi | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  𝐴 ) )  =  ∪  𝑤  ∈  𝑡 ( 𝐺  “  𝑤 ) ) | 
						
							| 42 | 37 41 | eqtr3d | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  𝐴  =  ∪  𝑤  ∈  𝑡 ( 𝐺  “  𝑤 ) ) | 
						
							| 43 | 42 | imaeq2d | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  ( ◡ 𝐹  “  𝐴 )  =  ( ◡ 𝐹  “  ∪  𝑤  ∈  𝑡 ( 𝐺  “  𝑤 ) ) ) | 
						
							| 44 |  | imaiun | ⊢ ( ◡ 𝐹  “  ∪  𝑤  ∈  𝑡 ( 𝐺  “  𝑤 ) )  =  ∪  𝑤  ∈  𝑡 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) ) | 
						
							| 45 | 43 44 | eqtrdi | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  ( ◡ 𝐹  “  𝐴 )  =  ∪  𝑤  ∈  𝑡 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) ) ) | 
						
							| 46 |  | ssdomg | ⊢ ( 𝐾  ∈  TopBases  →  ( 𝑡  ⊆  𝐾  →  𝑡  ≼  𝐾 ) ) | 
						
							| 47 | 23 46 | ax-mp | ⊢ ( 𝑡  ⊆  𝐾  →  𝑡  ≼  𝐾 ) | 
						
							| 48 |  | omelon | ⊢ ω  ∈  On | 
						
							| 49 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 50 | 49 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 51 |  | isnumi | ⊢ ( ( ω  ∈  On  ∧  ω  ≈  ℕ )  →  ℕ  ∈  dom  card ) | 
						
							| 52 | 48 50 51 | mp2an | ⊢ ℕ  ∈  dom  card | 
						
							| 53 |  | qnnen | ⊢ ℚ  ≈  ℕ | 
						
							| 54 |  | xpen | ⊢ ( ( ℚ  ≈  ℕ  ∧  ℚ  ≈  ℕ )  →  ( ℚ  ×  ℚ )  ≈  ( ℕ  ×  ℕ ) ) | 
						
							| 55 | 53 53 54 | mp2an | ⊢ ( ℚ  ×  ℚ )  ≈  ( ℕ  ×  ℕ ) | 
						
							| 56 |  | xpnnen | ⊢ ( ℕ  ×  ℕ )  ≈  ℕ | 
						
							| 57 | 55 56 | entri | ⊢ ( ℚ  ×  ℚ )  ≈  ℕ | 
						
							| 58 | 57 49 | entr2i | ⊢ ω  ≈  ( ℚ  ×  ℚ ) | 
						
							| 59 |  | isnumi | ⊢ ( ( ω  ∈  On  ∧  ω  ≈  ( ℚ  ×  ℚ ) )  →  ( ℚ  ×  ℚ )  ∈  dom  card ) | 
						
							| 60 | 48 58 59 | mp2an | ⊢ ( ℚ  ×  ℚ )  ∈  dom  card | 
						
							| 61 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 62 |  | ffun | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  Fun  (,) ) | 
						
							| 63 | 61 62 | ax-mp | ⊢ Fun  (,) | 
						
							| 64 |  | qssre | ⊢ ℚ  ⊆  ℝ | 
						
							| 65 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 66 | 64 65 | sstri | ⊢ ℚ  ⊆  ℝ* | 
						
							| 67 |  | xpss12 | ⊢ ( ( ℚ  ⊆  ℝ*  ∧  ℚ  ⊆  ℝ* )  →  ( ℚ  ×  ℚ )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 68 | 66 66 67 | mp2an | ⊢ ( ℚ  ×  ℚ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 69 | 61 | fdmi | ⊢ dom  (,)  =  ( ℝ*  ×  ℝ* ) | 
						
							| 70 | 68 69 | sseqtrri | ⊢ ( ℚ  ×  ℚ )  ⊆  dom  (,) | 
						
							| 71 |  | fores | ⊢ ( ( Fun  (,)  ∧  ( ℚ  ×  ℚ )  ⊆  dom  (,) )  →  ( (,)  ↾  ( ℚ  ×  ℚ ) ) : ( ℚ  ×  ℚ ) –onto→ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 72 | 63 70 71 | mp2an | ⊢ ( (,)  ↾  ( ℚ  ×  ℚ ) ) : ( ℚ  ×  ℚ ) –onto→ ( (,)  “  ( ℚ  ×  ℚ ) ) | 
						
							| 73 |  | fodomnum | ⊢ ( ( ℚ  ×  ℚ )  ∈  dom  card  →  ( ( (,)  ↾  ( ℚ  ×  ℚ ) ) : ( ℚ  ×  ℚ ) –onto→ ( (,)  “  ( ℚ  ×  ℚ ) )  →  ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ( ℚ  ×  ℚ ) ) ) | 
						
							| 74 | 60 72 73 | mp2 | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ( ℚ  ×  ℚ ) | 
						
							| 75 | 3 74 | eqbrtri | ⊢ 𝐵  ≼  ( ℚ  ×  ℚ ) | 
						
							| 76 |  | domentr | ⊢ ( ( 𝐵  ≼  ( ℚ  ×  ℚ )  ∧  ( ℚ  ×  ℚ )  ≈  ℕ )  →  𝐵  ≼  ℕ ) | 
						
							| 77 | 75 57 76 | mp2an | ⊢ 𝐵  ≼  ℕ | 
						
							| 78 | 15 | elexi | ⊢ 𝐵  ∈  V | 
						
							| 79 | 78 | xpdom1 | ⊢ ( 𝐵  ≼  ℕ  →  ( 𝐵  ×  𝐵 )  ≼  ( ℕ  ×  𝐵 ) ) | 
						
							| 80 | 77 79 | ax-mp | ⊢ ( 𝐵  ×  𝐵 )  ≼  ( ℕ  ×  𝐵 ) | 
						
							| 81 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 82 | 81 | xpdom2 | ⊢ ( 𝐵  ≼  ℕ  →  ( ℕ  ×  𝐵 )  ≼  ( ℕ  ×  ℕ ) ) | 
						
							| 83 | 77 82 | ax-mp | ⊢ ( ℕ  ×  𝐵 )  ≼  ( ℕ  ×  ℕ ) | 
						
							| 84 |  | domtr | ⊢ ( ( ( 𝐵  ×  𝐵 )  ≼  ( ℕ  ×  𝐵 )  ∧  ( ℕ  ×  𝐵 )  ≼  ( ℕ  ×  ℕ ) )  →  ( 𝐵  ×  𝐵 )  ≼  ( ℕ  ×  ℕ ) ) | 
						
							| 85 | 80 83 84 | mp2an | ⊢ ( 𝐵  ×  𝐵 )  ≼  ( ℕ  ×  ℕ ) | 
						
							| 86 |  | domentr | ⊢ ( ( ( 𝐵  ×  𝐵 )  ≼  ( ℕ  ×  ℕ )  ∧  ( ℕ  ×  ℕ )  ≈  ℕ )  →  ( 𝐵  ×  𝐵 )  ≼  ℕ ) | 
						
							| 87 | 85 56 86 | mp2an | ⊢ ( 𝐵  ×  𝐵 )  ≼  ℕ | 
						
							| 88 |  | numdom | ⊢ ( ( ℕ  ∈  dom  card  ∧  ( 𝐵  ×  𝐵 )  ≼  ℕ )  →  ( 𝐵  ×  𝐵 )  ∈  dom  card ) | 
						
							| 89 | 52 87 88 | mp2an | ⊢ ( 𝐵  ×  𝐵 )  ∈  dom  card | 
						
							| 90 |  | eqid | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) ) | 
						
							| 91 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 92 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 93 | 91 92 | xpex | ⊢ ( 𝑥  ×  𝑦 )  ∈  V | 
						
							| 94 | 90 93 | fnmpoi | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  Fn  ( 𝐵  ×  𝐵 ) | 
						
							| 95 |  | dffn4 | ⊢ ( ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  Fn  ( 𝐵  ×  𝐵 )  ↔  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) ) : ( 𝐵  ×  𝐵 ) –onto→ ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 96 | 94 95 | mpbi | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) ) : ( 𝐵  ×  𝐵 ) –onto→ ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) ) | 
						
							| 97 |  | fodomnum | ⊢ ( ( 𝐵  ×  𝐵 )  ∈  dom  card  →  ( ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) ) : ( 𝐵  ×  𝐵 ) –onto→ ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  →  ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  ≼  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 98 | 89 96 97 | mp2 | ⊢ ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  ≼  ( 𝐵  ×  𝐵 ) | 
						
							| 99 |  | domtr | ⊢ ( ( ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  ≼  ( 𝐵  ×  𝐵 )  ∧  ( 𝐵  ×  𝐵 )  ≼  ℕ )  →  ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  ≼  ℕ ) | 
						
							| 100 | 98 87 99 | mp2an | ⊢ ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  ≼  ℕ | 
						
							| 101 | 4 100 | eqbrtri | ⊢ 𝐾  ≼  ℕ | 
						
							| 102 |  | domtr | ⊢ ( ( 𝑡  ≼  𝐾  ∧  𝐾  ≼  ℕ )  →  𝑡  ≼  ℕ ) | 
						
							| 103 | 47 101 102 | sylancl | ⊢ ( 𝑡  ⊆  𝐾  →  𝑡  ≼  ℕ ) | 
						
							| 104 | 103 | ad2antrl | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  𝑡  ≼  ℕ ) | 
						
							| 105 | 4 | eleq2i | ⊢ ( 𝑤  ∈  𝐾  ↔  𝑤  ∈  ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 106 | 90 93 | elrnmpo | ⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ×  𝑦 ) )  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑤  =  ( 𝑥  ×  𝑦 ) ) | 
						
							| 107 | 105 106 | bitri | ⊢ ( 𝑤  ∈  𝐾  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑤  =  ( 𝑥  ×  𝑦 ) ) | 
						
							| 108 |  | elin | ⊢ ( 𝑧  ∈  ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∩  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) )  ↔  ( 𝑧  ∈  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∧  𝑧  ∈  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) ) ) | 
						
							| 109 |  | mbff | ⊢ ( 𝐹  ∈  MblFn  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 111 |  | fvco3 | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  =  ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 112 | 110 111 | sylan | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  =  ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 113 | 112 | eleq1d | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥  ↔  ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  𝑥 ) ) | 
						
							| 114 |  | fvco3 | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  =  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 115 | 110 114 | sylan | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  =  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 116 | 115 | eleq1d | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦  ↔  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  𝑦 ) ) | 
						
							| 117 | 113 116 | anbi12d | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 )  ↔  ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  𝑥  ∧  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  𝑦 ) ) ) | 
						
							| 118 | 110 | ffvelcdmda | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 119 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑧 )  →  ( ℜ ‘ 𝑤 )  =  ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 120 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑧 )  →  ( ℑ ‘ 𝑤 )  =  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 121 | 119 120 | opeq12d | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑧 )  →  〈 ( ℜ ‘ 𝑤 ) ,  ( ℑ ‘ 𝑤 ) 〉  =  〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ) | 
						
							| 122 | 2 | cnrecnv | ⊢ ◡ 𝐺  =  ( 𝑤  ∈  ℂ  ↦  〈 ( ℜ ‘ 𝑤 ) ,  ( ℑ ‘ 𝑤 ) 〉 ) | 
						
							| 123 |  | opex | ⊢ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉  ∈  V | 
						
							| 124 | 121 122 123 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ℂ  →  ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) )  =  〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ) | 
						
							| 125 | 118 124 | syl | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) )  =  〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ) | 
						
							| 126 | 125 | eleq1d | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝑥  ×  𝑦 )  ↔  〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉  ∈  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 127 | 118 | biantrurd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝑥  ×  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑧 )  ∈  ℂ  ∧  ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝑥  ×  𝑦 ) ) ) ) | 
						
							| 128 | 126 127 | bitr3d | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉  ∈  ( 𝑥  ×  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑧 )  ∈  ℂ  ∧  ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝑥  ×  𝑦 ) ) ) ) | 
						
							| 129 |  | opelxp | ⊢ ( 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉  ∈  ( 𝑥  ×  𝑦 )  ↔  ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  𝑥  ∧  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  𝑦 ) ) | 
						
							| 130 |  | f1ocnv | ⊢ ( 𝐺 : ( ℝ  ×  ℝ ) –1-1-onto→ ℂ  →  ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ  ×  ℝ ) ) | 
						
							| 131 |  | f1ofn | ⊢ ( ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ  ×  ℝ )  →  ◡ 𝐺  Fn  ℂ ) | 
						
							| 132 | 28 130 131 | mp2b | ⊢ ◡ 𝐺  Fn  ℂ | 
						
							| 133 |  | elpreima | ⊢ ( ◡ 𝐺  Fn  ℂ  →  ( ( 𝐹 ‘ 𝑧 )  ∈  ( ◡ ◡ 𝐺  “  ( 𝑥  ×  𝑦 ) )  ↔  ( ( 𝐹 ‘ 𝑧 )  ∈  ℂ  ∧  ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝑥  ×  𝑦 ) ) ) ) | 
						
							| 134 | 132 133 | ax-mp | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ( ◡ ◡ 𝐺  “  ( 𝑥  ×  𝑦 ) )  ↔  ( ( 𝐹 ‘ 𝑧 )  ∈  ℂ  ∧  ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 135 |  | imacnvcnv | ⊢ ( ◡ ◡ 𝐺  “  ( 𝑥  ×  𝑦 ) )  =  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) | 
						
							| 136 | 135 | eleq2i | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ( ◡ ◡ 𝐺  “  ( 𝑥  ×  𝑦 ) )  ↔  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 137 | 134 136 | bitr3i | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  ∈  ℂ  ∧  ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝑥  ×  𝑦 ) )  ↔  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 138 | 128 129 137 | 3bitr3g | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  𝑥  ∧  ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  𝑦 )  ↔  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) | 
						
							| 139 | 117 138 | bitrd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 )  ↔  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) | 
						
							| 140 | 139 | pm5.32da | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑧  ∈  dom  𝐹  ∧  ( ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 ) )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) ) | 
						
							| 141 |  | ref | ⊢ ℜ : ℂ ⟶ ℝ | 
						
							| 142 |  | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ  ∧  𝐹 : dom  𝐹 ⟶ ℂ )  →  ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 143 | 141 109 142 | sylancr | ⊢ ( 𝐹  ∈  MblFn  →  ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 144 |  | ffn | ⊢ ( ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ  →  ( ℜ  ∘  𝐹 )  Fn  dom  𝐹 ) | 
						
							| 145 |  | elpreima | ⊢ ( ( ℜ  ∘  𝐹 )  Fn  dom  𝐹  →  ( 𝑧  ∈  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥 ) ) ) | 
						
							| 146 | 143 144 145 | 3syl | ⊢ ( 𝐹  ∈  MblFn  →  ( 𝑧  ∈  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥 ) ) ) | 
						
							| 147 |  | imf | ⊢ ℑ : ℂ ⟶ ℝ | 
						
							| 148 |  | fco | ⊢ ( ( ℑ : ℂ ⟶ ℝ  ∧  𝐹 : dom  𝐹 ⟶ ℂ )  →  ( ℑ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 149 | 147 109 148 | sylancr | ⊢ ( 𝐹  ∈  MblFn  →  ( ℑ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 150 |  | ffn | ⊢ ( ( ℑ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ  →  ( ℑ  ∘  𝐹 )  Fn  dom  𝐹 ) | 
						
							| 151 |  | elpreima | ⊢ ( ( ℑ  ∘  𝐹 )  Fn  dom  𝐹  →  ( 𝑧  ∈  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 ) ) ) | 
						
							| 152 | 149 150 151 | 3syl | ⊢ ( 𝐹  ∈  MblFn  →  ( 𝑧  ∈  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 ) ) ) | 
						
							| 153 | 146 152 | anbi12d | ⊢ ( 𝐹  ∈  MblFn  →  ( ( 𝑧  ∈  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∧  𝑧  ∈  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) )  ↔  ( ( 𝑧  ∈  dom  𝐹  ∧  ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥 )  ∧  ( 𝑧  ∈  dom  𝐹  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 ) ) ) ) | 
						
							| 154 |  | anandi | ⊢ ( ( 𝑧  ∈  dom  𝐹  ∧  ( ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 ) )  ↔  ( ( 𝑧  ∈  dom  𝐹  ∧  ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥 )  ∧  ( 𝑧  ∈  dom  𝐹  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 ) ) ) | 
						
							| 155 | 153 154 | bitr4di | ⊢ ( 𝐹  ∈  MblFn  →  ( ( 𝑧  ∈  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∧  𝑧  ∈  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 ) ) ) ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑧  ∈  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∧  𝑧  ∈  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( ( ( ℜ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑥  ∧  ( ( ℑ  ∘  𝐹 ) ‘ 𝑧 )  ∈  𝑦 ) ) ) ) | 
						
							| 157 |  | ffn | ⊢ ( 𝐹 : dom  𝐹 ⟶ ℂ  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 158 |  | elpreima | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝑧  ∈  ( ◡ 𝐹  “  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) ) | 
						
							| 159 | 109 157 158 | 3syl | ⊢ ( 𝐹  ∈  MblFn  →  ( 𝑧  ∈  ( ◡ 𝐹  “  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑧  ∈  ( ◡ 𝐹  “  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) )  ↔  ( 𝑧  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) ) | 
						
							| 161 | 140 156 160 | 3bitr4d | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑧  ∈  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∧  𝑧  ∈  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) )  ↔  𝑧  ∈  ( ◡ 𝐹  “  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) ) | 
						
							| 162 | 108 161 | bitrid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑧  ∈  ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∩  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) )  ↔  𝑧  ∈  ( ◡ 𝐹  “  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) ) | 
						
							| 163 | 162 | eqrdv | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∩  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) )  =  ( ◡ 𝐹  “  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) | 
						
							| 164 |  | ismbfcn | ⊢ ( 𝐹 : dom  𝐹 ⟶ ℂ  →  ( 𝐹  ∈  MblFn  ↔  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 )  ∈  MblFn ) ) ) | 
						
							| 165 | 109 164 | syl | ⊢ ( 𝐹  ∈  MblFn  →  ( 𝐹  ∈  MblFn  ↔  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 )  ∈  MblFn ) ) ) | 
						
							| 166 | 165 | ibi | ⊢ ( 𝐹  ∈  MblFn  →  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ∧  ( ℑ  ∘  𝐹 )  ∈  MblFn ) ) | 
						
							| 167 | 166 | simpld | ⊢ ( 𝐹  ∈  MblFn  →  ( ℜ  ∘  𝐹 )  ∈  MblFn ) | 
						
							| 168 |  | ismbf | ⊢ ( ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ  →  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 169 | 143 168 | syl | ⊢ ( 𝐹  ∈  MblFn  →  ( ( ℜ  ∘  𝐹 )  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 170 | 167 169 | mpbid | ⊢ ( 𝐹  ∈  MblFn  →  ∀ 𝑥  ∈  ran  (,) ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 171 | 170 | adantr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∀ 𝑥  ∈  ran  (,) ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 172 |  | imassrn | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ⊆  ran  (,) | 
						
							| 173 | 3 172 | eqsstri | ⊢ 𝐵  ⊆  ran  (,) | 
						
							| 174 |  | simprl | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 175 | 173 174 | sselid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  ran  (,) ) | 
						
							| 176 |  | rsp | ⊢ ( ∀ 𝑥  ∈  ran  (,) ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol  →  ( 𝑥  ∈  ran  (,)  →  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 177 | 171 175 176 | sylc | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 178 | 166 | simprd | ⊢ ( 𝐹  ∈  MblFn  →  ( ℑ  ∘  𝐹 )  ∈  MblFn ) | 
						
							| 179 |  | ismbf | ⊢ ( ( ℑ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ  →  ( ( ℑ  ∘  𝐹 )  ∈  MblFn  ↔  ∀ 𝑦  ∈  ran  (,) ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ∈  dom  vol ) ) | 
						
							| 180 | 149 179 | syl | ⊢ ( 𝐹  ∈  MblFn  →  ( ( ℑ  ∘  𝐹 )  ∈  MblFn  ↔  ∀ 𝑦  ∈  ran  (,) ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ∈  dom  vol ) ) | 
						
							| 181 | 178 180 | mpbid | ⊢ ( 𝐹  ∈  MblFn  →  ∀ 𝑦  ∈  ran  (,) ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ∈  dom  vol ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∀ 𝑦  ∈  ran  (,) ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ∈  dom  vol ) | 
						
							| 183 |  | simprr | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 184 | 173 183 | sselid | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  ran  (,) ) | 
						
							| 185 |  | rsp | ⊢ ( ∀ 𝑦  ∈  ran  (,) ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ∈  dom  vol  →  ( 𝑦  ∈  ran  (,)  →  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ∈  dom  vol ) ) | 
						
							| 186 | 182 184 185 | sylc | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ∈  dom  vol ) | 
						
							| 187 |  | inmbl | ⊢ ( ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol  ∧  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 )  ∈  dom  vol )  →  ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∩  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) )  ∈  dom  vol ) | 
						
							| 188 | 177 186 187 | syl2anc | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∩  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑦 ) )  ∈  dom  vol ) | 
						
							| 189 | 163 188 | eqeltrrd | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ◡ 𝐹  “  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) )  ∈  dom  vol ) | 
						
							| 190 |  | imaeq2 | ⊢ ( 𝑤  =  ( 𝑥  ×  𝑦 )  →  ( 𝐺  “  𝑤 )  =  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 191 | 190 | imaeq2d | ⊢ ( 𝑤  =  ( 𝑥  ×  𝑦 )  →  ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  =  ( ◡ 𝐹  “  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) ) ) | 
						
							| 192 | 191 | eleq1d | ⊢ ( 𝑤  =  ( 𝑥  ×  𝑦 )  →  ( ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol  ↔  ( ◡ 𝐹  “  ( 𝐺  “  ( 𝑥  ×  𝑦 ) ) )  ∈  dom  vol ) ) | 
						
							| 193 | 189 192 | syl5ibrcom | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑤  =  ( 𝑥  ×  𝑦 )  →  ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol ) ) | 
						
							| 194 | 193 | rexlimdvva | ⊢ ( 𝐹  ∈  MblFn  →  ( ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑤  =  ( 𝑥  ×  𝑦 )  →  ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol ) ) | 
						
							| 195 | 107 194 | biimtrid | ⊢ ( 𝐹  ∈  MblFn  →  ( 𝑤  ∈  𝐾  →  ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol ) ) | 
						
							| 196 | 195 | ralrimiv | ⊢ ( 𝐹  ∈  MblFn  →  ∀ 𝑤  ∈  𝐾 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol ) | 
						
							| 197 |  | ssralv | ⊢ ( 𝑡  ⊆  𝐾  →  ( ∀ 𝑤  ∈  𝐾 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol  →  ∀ 𝑤  ∈  𝑡 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol ) ) | 
						
							| 198 | 196 197 | mpan9 | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝑡  ⊆  𝐾 )  →  ∀ 𝑤  ∈  𝑡 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol ) | 
						
							| 199 | 198 | ad2ant2r | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  ∀ 𝑤  ∈  𝑡 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol ) | 
						
							| 200 |  | iunmbl2 | ⊢ ( ( 𝑡  ≼  ℕ  ∧  ∀ 𝑤  ∈  𝑡 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol )  →  ∪  𝑤  ∈  𝑡 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol ) | 
						
							| 201 | 104 199 200 | syl2anc | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  ∪  𝑤  ∈  𝑡 ( ◡ 𝐹  “  ( 𝐺  “  𝑤 ) )  ∈  dom  vol ) | 
						
							| 202 | 45 201 | eqeltrd | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  ∧  ( 𝑡  ⊆  𝐾  ∧  ( ◡ 𝐺  “  𝐴 )  =  ∪  𝑡 ) )  →  ( ◡ 𝐹  “  𝐴 )  ∈  dom  vol ) | 
						
							| 203 | 27 202 | exlimddv | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐴  ∈  𝐽 )  →  ( ◡ 𝐹  “  𝐴 )  ∈  dom  vol ) |