Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
2 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
3 |
|
iccid |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
4 |
1 2 3
|
3syl |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
5 |
4
|
imaeq2d |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐵 ) ) = ( ◡ 𝐹 “ { 𝐵 } ) ) |
6 |
|
mbfimaicc |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐵 ) ) ∈ dom vol ) |
7 |
6
|
anabsan2 |
⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐵 ) ) ∈ dom vol ) |
8 |
7
|
3impa |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐵 ) ) ∈ dom vol ) |
9 |
5 8
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐵 ∈ ℝ ) → ( ◡ 𝐹 “ { 𝐵 } ) ∈ dom vol ) |