Metamath Proof Explorer


Theorem mbflimlem

Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses mbflim.1 𝑍 = ( ℤ𝑀 )
mbflim.2 ( 𝜑𝑀 ∈ ℤ )
mbflim.4 ( ( 𝜑𝑥𝐴 ) → ( 𝑛𝑍𝐵 ) ⇝ 𝐶 )
mbflim.5 ( ( 𝜑𝑛𝑍 ) → ( 𝑥𝐴𝐵 ) ∈ MblFn )
mbflimlem.6 ( ( 𝜑 ∧ ( 𝑛𝑍𝑥𝐴 ) ) → 𝐵 ∈ ℝ )
Assertion mbflimlem ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ MblFn )

Proof

Step Hyp Ref Expression
1 mbflim.1 𝑍 = ( ℤ𝑀 )
2 mbflim.2 ( 𝜑𝑀 ∈ ℤ )
3 mbflim.4 ( ( 𝜑𝑥𝐴 ) → ( 𝑛𝑍𝐵 ) ⇝ 𝐶 )
4 mbflim.5 ( ( 𝜑𝑛𝑍 ) → ( 𝑥𝐴𝐵 ) ∈ MblFn )
5 mbflimlem.6 ( ( 𝜑 ∧ ( 𝑛𝑍𝑥𝐴 ) ) → 𝐵 ∈ ℝ )
6 5 anass1rs ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛𝑍 ) → 𝐵 ∈ ℝ )
7 6 fmpttd ( ( 𝜑𝑥𝐴 ) → ( 𝑛𝑍𝐵 ) : 𝑍 ⟶ ℝ )
8 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝑀 ∈ ℤ )
9 climrel Rel ⇝
10 9 releldmi ( ( 𝑛𝑍𝐵 ) ⇝ 𝐶 → ( 𝑛𝑍𝐵 ) ∈ dom ⇝ )
11 3 10 syl ( ( 𝜑𝑥𝐴 ) → ( 𝑛𝑍𝐵 ) ∈ dom ⇝ )
12 1 climcau ( ( 𝑀 ∈ ℤ ∧ ( 𝑛𝑍𝐵 ) ∈ dom ⇝ ) → ∀ 𝑦 ∈ ℝ+𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( abs ‘ ( ( ( 𝑛𝑍𝐵 ) ‘ 𝑗 ) − ( ( 𝑛𝑍𝐵 ) ‘ 𝑘 ) ) ) < 𝑦 )
13 8 11 12 syl2anc ( ( 𝜑𝑥𝐴 ) → ∀ 𝑦 ∈ ℝ+𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( abs ‘ ( ( ( 𝑛𝑍𝐵 ) ‘ 𝑗 ) − ( ( 𝑛𝑍𝐵 ) ‘ 𝑘 ) ) ) < 𝑦 )
14 1 7 13 caurcvg ( ( 𝜑𝑥𝐴 ) → ( 𝑛𝑍𝐵 ) ⇝ ( lim sup ‘ ( 𝑛𝑍𝐵 ) ) )
15 climuni ( ( ( 𝑛𝑍𝐵 ) ⇝ ( lim sup ‘ ( 𝑛𝑍𝐵 ) ) ∧ ( 𝑛𝑍𝐵 ) ⇝ 𝐶 ) → ( lim sup ‘ ( 𝑛𝑍𝐵 ) ) = 𝐶 )
16 14 3 15 syl2anc ( ( 𝜑𝑥𝐴 ) → ( lim sup ‘ ( 𝑛𝑍𝐵 ) ) = 𝐶 )
17 16 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( lim sup ‘ ( 𝑛𝑍𝐵 ) ) ) = ( 𝑥𝐴𝐶 ) )
18 eqid ( 𝑥𝐴 ↦ ( lim sup ‘ ( 𝑛𝑍𝐵 ) ) ) = ( 𝑥𝐴 ↦ ( lim sup ‘ ( 𝑛𝑍𝐵 ) ) )
19 eqid ( 𝑚 ∈ ℝ ↦ sup ( ( ( ( 𝑛𝑍𝐵 ) “ ( 𝑚 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑚 ∈ ℝ ↦ sup ( ( ( ( 𝑛𝑍𝐵 ) “ ( 𝑚 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
20 7 ffvelrnda ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝑍 ) → ( ( 𝑛𝑍𝐵 ) ‘ 𝑘 ) ∈ ℝ )
21 1 8 14 20 climrecl ( ( 𝜑𝑥𝐴 ) → ( lim sup ‘ ( 𝑛𝑍𝐵 ) ) ∈ ℝ )
22 1 18 19 2 21 4 5 mbflimsup ( 𝜑 → ( 𝑥𝐴 ↦ ( lim sup ‘ ( 𝑛𝑍𝐵 ) ) ) ∈ MblFn )
23 17 22 eqeltrrd ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ MblFn )