Step |
Hyp |
Ref |
Expression |
1 |
|
mbflim.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
mbflim.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
mbflim.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 ) |
4 |
|
mbflim.5 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
5 |
|
mbflimlem.6 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
6 |
5
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
7 |
6
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
9 |
|
climrel |
⊢ Rel ⇝ |
10 |
9
|
releldmi |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
11 |
3 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
12 |
1
|
climcau |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) − ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) < 𝑦 ) |
13 |
8 11 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) − ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) < 𝑦 ) |
14 |
1 7 13
|
caurcvg |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) |
15 |
|
climuni |
⊢ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) = 𝐶 ) |
16 |
14 3 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) = 𝐶 ) |
17 |
16
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) |
19 |
|
eqid |
⊢ ( 𝑚 ∈ ℝ ↦ sup ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) “ ( 𝑚 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑚 ∈ ℝ ↦ sup ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) “ ( 𝑚 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
20 |
7
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
21 |
1 8 14 20
|
climrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) |
22 |
1 18 19 2 21 4 5
|
mbflimsup |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) ∈ MblFn ) |
23 |
17 22
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |