| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbflimsup.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
mbflimsup.2 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 3 |
|
mbflimsup.h |
⊢ 𝐻 = ( 𝑚 ∈ ℝ ↦ sup ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) “ ( 𝑚 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 4 |
|
mbflimsup.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 5 |
|
mbflimsup.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) |
| 6 |
|
mbflimsup.5 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 7 |
|
mbflimsup.6 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 8 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
| 9 |
8
|
mptex |
⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ V |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ V ) |
| 11 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 12 |
1 11
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
| 13 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 14 |
12 13
|
sstri |
⊢ 𝑍 ⊆ ℝ |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑍 ⊆ ℝ ) |
| 16 |
1
|
uzsup |
⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 17 |
4 16
|
syl |
⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 19 |
3 10 15 18
|
limsupval2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) = inf ( ( 𝐻 “ 𝑍 ) , ℝ* , < ) ) |
| 20 |
|
imassrn |
⊢ ( 𝐻 “ 𝑍 ) ⊆ ran 𝐻 |
| 21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
| 22 |
7
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 23 |
22
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 24 |
5
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) < +∞ ) |
| 25 |
3 1
|
limsupgre |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) < +∞ ) → 𝐻 : ℝ ⟶ ℝ ) |
| 26 |
21 23 24 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 : ℝ ⟶ ℝ ) |
| 27 |
26
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran 𝐻 ⊆ ℝ ) |
| 28 |
20 27
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 “ 𝑍 ) ⊆ ℝ ) |
| 29 |
26
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom 𝐻 = ℝ ) |
| 30 |
29
|
ineq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( dom 𝐻 ∩ 𝑍 ) = ( ℝ ∩ 𝑍 ) ) |
| 31 |
|
sseqin2 |
⊢ ( 𝑍 ⊆ ℝ ↔ ( ℝ ∩ 𝑍 ) = 𝑍 ) |
| 32 |
14 31
|
mpbi |
⊢ ( ℝ ∩ 𝑍 ) = 𝑍 |
| 33 |
30 32
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( dom 𝐻 ∩ 𝑍 ) = 𝑍 ) |
| 34 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 35 |
4 34
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 36 |
35 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ 𝑍 ) |
| 38 |
37
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑍 ≠ ∅ ) |
| 39 |
33 38
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( dom 𝐻 ∩ 𝑍 ) ≠ ∅ ) |
| 40 |
|
imadisj |
⊢ ( ( 𝐻 “ 𝑍 ) = ∅ ↔ ( dom 𝐻 ∩ 𝑍 ) = ∅ ) |
| 41 |
40
|
necon3bii |
⊢ ( ( 𝐻 “ 𝑍 ) ≠ ∅ ↔ ( dom 𝐻 ∩ 𝑍 ) ≠ ∅ ) |
| 42 |
39 41
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 “ 𝑍 ) ≠ ∅ ) |
| 43 |
5
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 44 |
22
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ* ) |
| 45 |
44
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ) |
| 46 |
5
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ* ) |
| 47 |
3
|
limsuple |
⊢ ( ( 𝑍 ⊆ ℝ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ∧ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ* ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ ∀ 𝑦 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 48 |
15 45 46 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ ∀ 𝑦 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 49 |
43 48
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 50 |
|
ssralv |
⊢ ( 𝑍 ⊆ ℝ → ( ∀ 𝑦 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 51 |
14 49 50
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 52 |
3
|
limsupgf |
⊢ 𝐻 : ℝ ⟶ ℝ* |
| 53 |
|
ffn |
⊢ ( 𝐻 : ℝ ⟶ ℝ* → 𝐻 Fn ℝ ) |
| 54 |
52 53
|
ax-mp |
⊢ 𝐻 Fn ℝ |
| 55 |
|
breq2 |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑦 ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ↔ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 56 |
55
|
ralima |
⊢ ( ( 𝐻 Fn ℝ ∧ 𝑍 ⊆ ℝ ) → ( ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ↔ ∀ 𝑦 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 57 |
54 15 56
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ↔ ∀ 𝑦 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 58 |
51 57
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ) |
| 59 |
|
breq1 |
⊢ ( 𝑦 = ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) → ( 𝑦 ≤ 𝑧 ↔ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ) ) |
| 60 |
59
|
ralbidv |
⊢ ( 𝑦 = ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) → ( ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) 𝑦 ≤ 𝑧 ↔ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ) ) |
| 61 |
60
|
rspcev |
⊢ ( ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ∧ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) 𝑦 ≤ 𝑧 ) |
| 62 |
5 58 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) 𝑦 ≤ 𝑧 ) |
| 63 |
|
infxrre |
⊢ ( ( ( 𝐻 “ 𝑍 ) ⊆ ℝ ∧ ( 𝐻 “ 𝑍 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝐻 “ 𝑍 ) 𝑦 ≤ 𝑧 ) → inf ( ( 𝐻 “ 𝑍 ) , ℝ* , < ) = inf ( ( 𝐻 “ 𝑍 ) , ℝ , < ) ) |
| 64 |
28 42 62 63
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( ( 𝐻 “ 𝑍 ) , ℝ* , < ) = inf ( ( 𝐻 “ 𝑍 ) , ℝ , < ) ) |
| 65 |
|
df-ima |
⊢ ( 𝐻 “ 𝑍 ) = ran ( 𝐻 ↾ 𝑍 ) |
| 66 |
26
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 = ( 𝑖 ∈ ℝ ↦ ( 𝐻 ‘ 𝑖 ) ) ) |
| 67 |
66
|
reseq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ↾ 𝑍 ) = ( ( 𝑖 ∈ ℝ ↦ ( 𝐻 ‘ 𝑖 ) ) ↾ 𝑍 ) ) |
| 68 |
|
resmpt |
⊢ ( 𝑍 ⊆ ℝ → ( ( 𝑖 ∈ ℝ ↦ ( 𝐻 ‘ 𝑖 ) ) ↾ 𝑍 ) = ( 𝑖 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑖 ) ) ) |
| 69 |
14 68
|
ax-mp |
⊢ ( ( 𝑖 ∈ ℝ ↦ ( 𝐻 ‘ 𝑖 ) ) ↾ 𝑍 ) = ( 𝑖 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑖 ) ) |
| 70 |
67 69
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ↾ 𝑍 ) = ( 𝑖 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑖 ) ) ) |
| 71 |
14
|
sseli |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ℝ ) |
| 72 |
|
ffvelcdm |
⊢ ( ( 𝐻 : ℝ ⟶ ℝ ∧ 𝑖 ∈ ℝ ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ ) |
| 73 |
26 71 72
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ ) |
| 74 |
73
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ) |
| 75 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝜑 ) |
| 76 |
1
|
uztrn2 |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑛 ∈ 𝑍 ) |
| 77 |
76
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑛 ∈ 𝑍 ) |
| 78 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑥 ∈ 𝐴 ) |
| 79 |
75 77 78 7
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝐵 ∈ ℝ ) |
| 80 |
79
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℝ ) |
| 81 |
80
|
frnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ⊆ ℝ ) |
| 82 |
|
eqid |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) |
| 83 |
82 79
|
dmmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → dom ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) = ( ℤ≥ ‘ 𝑖 ) ) |
| 84 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) |
| 85 |
84 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 86 |
|
eluzelz |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑖 ∈ ℤ ) |
| 87 |
85 86
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℤ ) |
| 88 |
87
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℤ ) |
| 89 |
|
uzid |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 90 |
|
ne0i |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑖 ) → ( ℤ≥ ‘ 𝑖 ) ≠ ∅ ) |
| 91 |
88 89 90
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ≠ ∅ ) |
| 92 |
83 91
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → dom ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ) |
| 93 |
|
dm0rn0 |
⊢ ( dom ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) = ∅ ↔ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) = ∅ ) |
| 94 |
93
|
necon3bii |
⊢ ( dom ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ↔ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ) |
| 95 |
92 94
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ) |
| 96 |
85
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 97 |
|
uzss |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 98 |
96 97
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 99 |
98 1
|
sseqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) |
| 100 |
73
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 101 |
14
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑍 ⊆ ℝ ) |
| 102 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ) |
| 103 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) |
| 104 |
14 103
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℝ ) |
| 105 |
3
|
limsupgle |
⊢ ( ( ( 𝑍 ⊆ ℝ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ) ∧ 𝑖 ∈ ℝ ∧ ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ) → ( ( 𝐻 ‘ 𝑖 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 106 |
101 102 104 74 105
|
syl211anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑖 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 107 |
100 106
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 108 |
|
ssralv |
⊢ ( ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 109 |
99 107 108
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 110 |
99
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) |
| 111 |
110
|
resmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑖 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ) |
| 112 |
111
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 113 |
|
fvres |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 114 |
113
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 115 |
112 114
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 116 |
115
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 117 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) → 𝑖 ≤ 𝑘 ) |
| 118 |
117
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑖 ≤ 𝑘 ) |
| 119 |
|
biimt |
⊢ ( 𝑖 ≤ 𝑘 → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 120 |
118 119
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 121 |
116 120
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 122 |
121
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 123 |
109 122
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 124 |
|
ffn |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℝ → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) Fn ( ℤ≥ ‘ 𝑖 ) ) |
| 125 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) → ( 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 126 |
125
|
ralrn |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) Fn ( ℤ≥ ‘ 𝑖 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 127 |
80 124 126
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 128 |
123 127
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 129 |
|
brralrspcev |
⊢ ( ( ( 𝐻 ‘ 𝑖 ) ∈ ℝ ∧ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 130 |
73 128 129
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 131 |
81 95 130
|
suprcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 132 |
131
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ* ) |
| 133 |
81
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ⊆ ℝ ) |
| 134 |
95
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ) |
| 135 |
130
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 136 |
12
|
sseli |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 137 |
|
eluz |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↔ 𝑖 ≤ 𝑘 ) ) |
| 138 |
88 136 137
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↔ 𝑖 ≤ 𝑘 ) ) |
| 139 |
138
|
biimprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑖 ≤ 𝑘 → 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 140 |
139
|
impr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 141 |
140 115
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 142 |
80
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℝ ) |
| 143 |
142 124
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) Fn ( ℤ≥ ‘ 𝑖 ) ) |
| 144 |
|
fnfvelrn |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) Fn ( ℤ≥ ‘ 𝑖 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ) |
| 145 |
143 140 144
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ‘ 𝑘 ) ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ) |
| 146 |
141 145
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ) |
| 147 |
133 134 135 146
|
suprubd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 148 |
147
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 149 |
148
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 150 |
3
|
limsupgle |
⊢ ( ( ( 𝑍 ⊆ ℝ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ) ∧ 𝑖 ∈ ℝ ∧ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ* ) → ( ( 𝐻 ‘ 𝑖 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) ) |
| 151 |
101 102 104 132 150
|
syl211anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑖 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑖 ≤ 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) ) |
| 152 |
149 151
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 153 |
|
suprleub |
⊢ ( ( ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ ( 𝐻 ‘ 𝑖 ) ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 154 |
81 95 130 73 153
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 155 |
128 154
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 156 |
74 132 152 155
|
xrletrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑖 ) = sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 157 |
156
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑖 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑖 ) ) = ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 158 |
70 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ↾ 𝑍 ) = ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 159 |
158
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝐻 ↾ 𝑍 ) = ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 160 |
65 159
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 “ 𝑍 ) = ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 161 |
160
|
infeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( ( 𝐻 “ 𝑍 ) , ℝ , < ) = inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) |
| 162 |
19 64 161
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) = inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) |
| 163 |
162
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) ) |
| 164 |
2 163
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) ) |
| 165 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) = ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) |
| 166 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑖 ) |
| 167 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) = ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 168 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝜑 ) |
| 169 |
76
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑛 ∈ 𝑍 ) |
| 170 |
168 169 6
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 171 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝜑 ) |
| 172 |
76
|
ad2ant2lr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝑛 ∈ 𝑍 ) |
| 173 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 174 |
171 172 173 7
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 175 |
79
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ∈ ℝ ) |
| 176 |
|
breq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
| 177 |
82 176
|
ralrnmptw |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ∈ ℝ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) ) |
| 178 |
175 177
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) ) |
| 179 |
178
|
rexbidv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) ) |
| 180 |
130 179
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) |
| 181 |
180
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) |
| 182 |
166 167 87 170 174 181
|
mbfsup |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ∈ MblFn ) |
| 183 |
131
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 184 |
183
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 185 |
3
|
limsuple |
⊢ ( ( 𝑍 ⊆ ℝ ∧ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ∧ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ* ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ ∀ 𝑖 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 186 |
15 45 46 185
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ↔ ∀ 𝑖 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 187 |
43 186
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑖 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 188 |
|
ssralv |
⊢ ( 𝑍 ⊆ ℝ → ( ∀ 𝑖 ∈ ℝ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) → ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) ) |
| 189 |
14 187 188
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ) |
| 190 |
156
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) → ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 191 |
190
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ ( 𝐻 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 192 |
189 191
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 193 |
|
breq1 |
⊢ ( 𝑦 = ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) → ( 𝑦 ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ↔ ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 194 |
193
|
ralbidv |
⊢ ( 𝑦 = ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) → ( ∀ 𝑖 ∈ 𝑍 𝑦 ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ↔ ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) ) |
| 195 |
194
|
rspcev |
⊢ ( ( ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ∧ ∀ 𝑖 ∈ 𝑍 ( lim sup ‘ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑦 ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 196 |
5 192 195
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑦 ≤ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 197 |
1 165 4 182 184 196
|
mbfinf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ inf ( ran ( 𝑖 ∈ 𝑍 ↦ sup ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ 𝐵 ) , ℝ , < ) ) , ℝ , < ) ) ∈ MblFn ) |
| 198 |
164 197
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |