| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfmul.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfmul.2 | ⊢ ( 𝜑  →  𝐺  ∈  MblFn ) | 
						
							| 3 |  | mbff | ⊢ ( 𝐹  ∈  MblFn  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 5 | 4 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 6 |  | mbff | ⊢ ( 𝐺  ∈  MblFn  →  𝐺 : dom  𝐺 ⟶ ℂ ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  𝐺 : dom  𝐺 ⟶ ℂ ) | 
						
							| 8 | 7 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  dom  𝐺 ) | 
						
							| 9 |  | mbfdm | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 10 | 1 9 | syl | ⊢ ( 𝜑  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 11 |  | mbfdm | ⊢ ( 𝐺  ∈  MblFn  →  dom  𝐺  ∈  dom  vol ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  dom  𝐺  ∈  dom  vol ) | 
						
							| 13 |  | eqid | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  =  ( dom  𝐹  ∩  dom  𝐺 ) | 
						
							| 14 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 15 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 16 | 5 8 10 12 13 14 15 | offval | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 17 |  | elinel1 | ⊢ ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  𝑥  ∈  dom  𝐹 ) | 
						
							| 18 |  | ffvelcdm | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 19 | 4 17 18 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 20 |  | elinel2 | ⊢ ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  →  𝑥  ∈  dom  𝐺 ) | 
						
							| 21 |  | ffvelcdm | ⊢ ( ( 𝐺 : dom  𝐺 ⟶ ℂ  ∧  𝑥  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 22 | 7 20 21 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 23 | 19 22 | remuld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  −  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 24 | 23 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  −  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 25 |  | inmbl | ⊢ ( ( dom  𝐹  ∈  dom  vol  ∧  dom  𝐺  ∈  dom  vol )  →  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol ) | 
						
							| 26 | 10 12 25 | syl2anc | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol ) | 
						
							| 27 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 28 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 29 | 19 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 30 | 22 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 31 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 32 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 33 | 26 29 30 31 32 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 34 | 19 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 35 | 22 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 36 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 37 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 38 | 26 34 35 36 37 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 39 | 26 27 28 33 38 | offval2 | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∘f   −  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  −  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 40 | 24 39 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∘f   −  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 41 |  | inss1 | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐹 | 
						
							| 42 |  | resmpt | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐹  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 44 | 4 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 45 | 44 1 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 46 |  | mbfres | ⊢ ( ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn  ∧  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol )  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 47 | 45 26 46 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  dom  𝐹  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 48 | 43 47 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 49 | 19 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  MblFn  ↔  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn ) ) ) | 
						
							| 50 | 48 49 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn ) ) | 
						
							| 51 | 50 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 52 |  | inss2 | ⊢ ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐺 | 
						
							| 53 |  | resmpt | ⊢ ( ( dom  𝐹  ∩  dom  𝐺 )  ⊆  dom  𝐺  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 54 | 52 53 | ax-mp | ⊢ ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 55 | 7 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 56 | 55 2 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 57 |  | mbfres | ⊢ ( ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn  ∧  ( dom  𝐹  ∩  dom  𝐺 )  ∈  dom  vol )  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 58 | 56 26 57 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  dom  𝐺  ↦  ( 𝐺 ‘ 𝑥 ) )  ↾  ( dom  𝐹  ∩  dom  𝐺 ) )  ∈  MblFn ) | 
						
							| 59 | 54 58 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn ) | 
						
							| 60 | 22 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  MblFn  ↔  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) ) ) | 
						
							| 61 | 59 60 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) ) | 
						
							| 62 | 61 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 63 | 29 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℝ ) | 
						
							| 64 | 30 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℝ ) | 
						
							| 65 | 51 62 63 64 | mbfmullem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 66 | 50 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 67 | 61 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 68 | 34 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℝ ) | 
						
							| 69 | 35 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom  𝐹  ∩  dom  𝐺 ) ⟶ ℝ ) | 
						
							| 70 | 66 67 68 69 | mbfmullem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 71 | 65 70 | mbfsub | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∘f   −  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) )  ∈  MblFn ) | 
						
							| 72 | 40 71 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 73 | 19 22 | immuld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  +  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 74 | 73 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  +  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 75 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 76 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 77 | 26 29 35 31 37 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 78 | 26 34 30 36 32 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 79 | 26 75 76 77 78 | offval2 | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∘f   +  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) )  +  ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) )  ·  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 80 | 74 79 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∘f   +  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 81 | 51 67 63 69 | mbfmullem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 82 | 66 62 68 64 | mbfmullem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 83 | 81 82 | mbfadd | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) )  ∘f   +  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) )  ∈  MblFn ) | 
						
							| 84 | 80 83 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) | 
						
							| 85 | 19 22 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 86 | 85 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn  ↔  ( ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  MblFn ) ) ) | 
						
							| 87 | 72 84 86 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  ∈  MblFn ) | 
						
							| 88 | 16 87 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  MblFn ) |